Flexible Graphene-Enriched Fibrous Electrode Nanomaterials
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Being endowed with extraordinary electrical andriiied conductivity, high surface area,
good flexibility, superior chemical and thermallsligy [1,2], graphene is often incorporated,
as an additive, in composites containing all kinfigunctional materials in order to improve
their performances. As a matter of fact, the syithef new graphene-enriched (GE)
nanomaterials for advanced applications is nhowadagsof the areas of greatest interest for
the Scientific Community. GE-nanomaterials are ay@ll in a lot of different fields,
including energy storage devices [3]. In this fijebthe of the most challenging tasks is the
preparation of freestanding mats for the fabricabbflexible lithium ion batteries (F-LIBS).
Cobaltosic oxide (Cf,) exhibits intriguing electronic, optical, electhmmical, and
electrocatalytic properties. g0,-based composites have been considered as supgtcepa
heterogeneous catalysts, electrochemical senswt€lectrodes for F-LIBs [3,4].

This work deals with the preparation of freestagdmats of CgO4-based GE-nanofibers
(NFs) to be used as electrodes in F-LIBs. Synthsscarried out by means of the electro-
spinning (ES) that, thanks to its simplicity, cheags, versatility and scalability, represents a
very commercially-competitive technique for thewgtio of 1-dimensional materials [3,5,6].

Mats of C@O4-based GE-NFs were prepared by ushiyl-dimethylformamide (DMF) as
solvent, polyacrylonitrile (PAN, (§43N),) as polymer and graphene oxide (GO) as
carbonaceous additive. Cobalt acetate (CA,;@BO)Co-4H0) or cobalt nitrate (CN,
Co(NGs),) was used as a cobalt oxide precursor, and iiseinfe on the morphology of the
spun material was investigated. The spinnable isolutvas prepared by dissolving PAN
(6.5 wt%) in DMF, adding the cobalt precursor (CA®@N, 2.5 wt%), and stirring until a
clear solution was obtained. Finally, 1 wt% GO warporated into the mixture and stirred.
A 20 ml syringe, equipped with a 40 mm long 0.8 gaige stainless steel needle, was used.
Solution feeding-rate, applied potential and distabetween the tip of the syringe needle and
the grounded aluminum collector were 1.41 ml/hk¥5and 15 cm, respectively. ES was
carried out at 20+1°C (relative humidity: 40%).

CN gave rise to fluffy deposits, while the use & @llowed for the formation of films. As-
spun films were calcined in air for 6 h at differéemperature (225 and 300°C) to obtain the
oxide from the precursor, and then annealed irt e@rironment (helium) at 600°C for 2 h to
carbonize the polymer [6].

Figure 1 shows the main results of Raman and xplagtoelectron spectroscopy (XPS)
analyses. The GO, crystalline phase of the oxide forms at any calitom temperaturerlt).
Degradation of PAN-component of the NFs at highercauses the relative weight of the
cobaltosic oxide to increase from ~25wt% to ~70wa%d the G Raman signal to weaken.
Figure 2 shows the most representative resultscahrsng electron spectroscopy/energy-
dispersive x-ray spectroscopy (SEM/EDX). Thermaatments do not alter the fibrous
structure of the as-spun mats. Nonetheless, aehigh(Figs. 2a—2b) the average diameter of



the fibers (420-300 nm) depends on their compas#iod shrinks in the presence of;0p
and GO. Instead, by calcining at 225°C (Figs. 2§-tBe average fiber diameter (420 nm)
does not vary with the fiber composition. The elatakdispersion, as detected by EDX, is
generally homogeneous (Fig. 2f).

Summarizing, flexible freestanding mats of;Ogbased GE-NFs mats (inset of Fig. 2e) are
obtained by the use of CA as precursor and 6 hinzdion in air at 225°C followed by 2 h
annealing in He at 600°C. They will be tested asdas materials for F-LIBs.
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Figure 1: (a—c) Raman and (d—f) XPS spectra afozdased NFs (a,b,d,e) and {Oa-based
GE-NFs (c,f) obtained fofc=300°C (a,d) andc=225°C (b,c,e,f).
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Figure 2: (a,c,e) SEM images of ;Km-bas NFs (a,c) and gm-based | GE-NFs (e)
obtained forTc=300°C (a) and¢c=225°C (c,e). The NF diameter distributions (bgaf)dases
(a) and (b), as well as the elemental dispersisaltiag from EDX in case (e) are also shown.
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