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Two-dimensional (2D) materials have been widely investigated for the fabrication of 
electronic devices, sensors, catalysis, and energy storage application because of their exotic 
electronic properties and large specific surface area. According to recent reports on layered 
transition-metal dichalcogenides (TMDs), they present excellent electronic performance with 
outstanding on-off ratios [1,2] and ultra-high sensitivities towards gaseous molecules [3,4]. In 
this study, we present various TMD thin-films grown by thermally-assisted conversion (TAC) 
method [5] and investigate their performance as gas sensors in a simple chemical resistor 
(chemiresistor) structure. 
 
Our TMD films were produced by direct sulfurization or selenization of pre-deposited metal 
layers in a quartz tube furnace with two heating zones. The pristine metal layers were heated 
to growth temperature and S or Se powder was melted in a second upstream heating zone. Ar, 
as a carrier gas, delivered S or Se vapor to pre-defined metal patterns on the substrates, for 
converting of TMDs: MoS2, MoSe2, WS2, and WSe2 films. This approach is scalable and 
industry compatible and allows for patterned growth with good control over film thickness as 
shown in Figure 1.  
Interdigitated electrodes were defined for electrical characterization and sensor tests using a 
shadow mask. The contacted samples were loaded into a custom-built chamber which kept a 
constant pressure with a dry N2 flow. Mass flow controllers (MFCs) remotely mixed target 
gas (NH3 or NO2) in N2 to control gas concentration. While the target gas was periodically 
introduced, the resistance was continuously monitored at a constant bias voltage. Sensor 
response can be depicted by percentile relative resistance. Adsorbed gas molecules onto the 
surface of TMD layers modulate carrier density by adjacent doping, thus conductance 
changes depending on majority carrier of TMDs as shown in Figure 2.  
 
In conclusion, sub-ppm of NO2 was empirically detectable in 2 minutes and it could be 
proven by a simple signal processing based on signal-to-noise ratio. The initial resistance and 
root-mean-square (RMS) noise of sample resistance were derived from certain data points just 
before the first gas introduction. From the linearity of the SNR versus gas concentration, 
theoretical limit of detection could be extrapolated down to sub-ppm. 
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Figure 1: Synthesized TMD films on the quartz substrates show different transparency 
depending on film thickness. 
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Figure 2: Sensor response curves of the MoSe2 sensor at 10 ppm of NO2 and 200 ppm of NH3 
gases, respectively. Inset: Photograph of a contacted MoSe2 sensor. 
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