Graphene Nano-platelets Thickness and Lateral Size Influence on Thermal and Electrical Properties in Thermoset Composites

Mirotta Nicola¹, Alessandro Kovtun¹, Emanuele Treossi^{1, 2}, Tamara Blanco³ Julio Gómez⁴, Alberto Fina⁵ and Vincenzo Palermo¹

¹ Istituto per la Sintesi Organica e la Fotoreattività-Consiglio Nazionale delle Ricerche (ISOF-CNR), via Gobetti 101, 40129 Bologna, Italy.

² Laboratorio MIST.E-R Bologna, via Gobetti 101, 40129 Bologna, Italy.

³ AIRBUS group, Paseo John Lennon, 1, 28906 Getafe, Madrid, Spain.

⁴AVANZARE Innovacion Tecnologica S.L., C/Jardines 5 (Pol. Ind. Lentiscares), 26370 Navarrete (La Rioja) Spain.

⁵ Department of Applied Science and Technology (DISAT) Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy.

ABSTRACT

Graphene reinforced polymer composites show important improvements in their electrical and thermal conductivity and other thermo-physical properties, as compared to other more conventional materials [1, 2]. One of the main challenges to achieve the large-scale potential for technological and engineering applications is to achieve homogeneous dispersion of the thin graphene nano-platelets within the polymer matrix. In this work, a combination of various techniques has been used to prepare well-dispersed and well-performing graphene/epoxy composites, exploiting to achieve efficient mixing shear micromechanical forces with high shear-speed mixing followed by a calendering technique.

The fabrication method for epoxy composites is quite simple, based on mechanical mixing using a combination of different techniques following by casting in a metallic mould. A main advantage in this technique is the absence of volatile and harmful solvent as carrier for a filler.

Two different graphene nano-platelets, with different thickness and flake size, were added in order to analyse the influence of the size of the nano-filler: thickness and lateral dimensions. Various amounts of graphene ranging from 0% to 2% w/w were added to the composite.

Electrical conductivity measurements were performed on macroscopic samples (7 cm) and present the typical percolative behavior, with a strong dependence of conductivity on filler's morphology as shown in figure 1.

Figure 1. (A) Percolative behavior of graphene1; (B) Percolative behavior of GnP 2

Thermal conductivity was also measured in accordance with UNI EN ISO 22007-2 by using a TPS 2500S from HotDisk AB (Sweden); the results shows an improvement >50% of the thermal conductivity for a graphene based composites.

References

[1] S.G. Prolongo, , A. Jiménez-Suárez, R. Moriche, A. Ureña European Polymer Journal, 53, 2014, 292–301

[2] An J., Gyu Jeong Y. Structure and electric heating performance of graphene/epoxy composite films. Eur Polym J 2013; 49: 1322–30.