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Single-layer graphene

We consider undoped single-layer graphene,
with no disorder.

The interacting system has strong
analogies with infrared QED2+1 at
intermediate coupling strength.

Non-perturbative and unbiased
methods are needed to draw even
qualitative conclusions.
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2D Dirac Fermi gas

A popular model for undoped clean graphene is
2D Dirac particles in the continuum with a
static 3D Coulomb interaction.

Two main drawbacks:

1 Ad hoc regularizations have to be added to cure
the spurious UV divergences.
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Drawbacks: (1) cutoff dependent results

Sometimes the results are regularization-dependent.
An example: the universal optical conductivity.

Nair et al.
Science 2008

A big debate on the effect of ad
hoc UV cutoffs [Herbut-Juricic-Vafek,

Mishchenko, Sheehy-Schmalian, ...]

Theorem [GM 2008 – GMP 2010].
For the Hubbard model on the
honeycomb lattice at µ = 0 and
|U | ≤ U0,

lim
ω→0

lim
T→0

σT
xx(ω;U) =

π

2

e2

h
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Drawbacks: (2) divergent Fermi velocity

2 The static Coulombic interaction is marginal.
At 1-loop, RG predicts a logarithmic growth
of the Fermi velocity, which suggests that
retardation effects are important in the
understanding of the IR fixed point
[Gonzalez-Guinea-Vozmediano].
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We propose a lattice gauge theory model for undoped
graphene, describing tight binding electrons coupled
to a quantum 3D photon field.
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A lattice gauge theory model

We propose a lattice gauge theory model for undoped
graphene, describing tight binding electrons coupled
to a quantum 3D photon field.

We perform an exact RG treatment of the model
based on the methods of constructive QFT.

Lattice effects are fully taken into account:

no Dirac approximation

no large-N expansion

exact lattice Ward Identities
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1 Line of IR fixed points, parametrized by α.
Response functions have anomalous exponents.
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Predictions

1 Line of IR fixed points, parametrized by α.
Response functions have anomalous exponents.

2 Lattice gauge invariance guarantees the
spontaneous emergence of Lorentz invariance.

3 The Kekulé, CDW and AF responses are
enhanced by the interaction: they decay at large
distances slower than in the free gas.

4 The K, CDW, AF masses satisfy non-BCS gap
eqns, which may admit non-trivial solutions at
intermediate coupling.
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The lattice

Let ΛA = Λ and ΛB = Λ + ~δi be the A- and B-
triangular sublattices of the honeycomb lattice.
a±, b± are creation/annihilation operators on ΛA,B .

A B

1

2

3

l
1

l
2
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The model

The grandcanonical Hamiltonian is (~ = c = 1)

HΛ = −t
∑
~x∈Λ

i=1,2,3

∑
σ=↑↓

(
a+
~x ,σb

−
~x+~δi ,σ

e ie
∫ 1

0
~A(~x+s~δi )·~δi ds + c .c .

)

+
e2

2

∑
~x ,~y∈ΛA∪ΛB

(n~x − 1)(n~y − 1)

|~x − ~y |
+Hfree field

A ,

where:

1 n~x = electronic density at ~x ;

2 A is a 3D quantized vector potential.

Note: the electron field is coupled nonlinearly to a
quantum 3D photon field!
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Main results [Giuliani-Mastropietro-Porta, 2010]

The theory is renormalizable at all orders in e2.
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Z (k)

(
ik0 v(k)Ω∗(~k)

v(k)Ω(~k) ik0

)−1

(1+B(k)) ,

where B(k) is bounded at all orders in e2 and vanishes
at the Fermi points.
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Main results [Giuliani-Mastropietro-Porta, 2010]

The theory is renormalizable at all orders in e2.

The two-point function reads:

〈ψ−k,σψ
+
k,σ〉 = − 1

Z (k)

(
ik0 v(k)Ω∗(~k)

v(k)Ω(~k) ik0

)−1

(1+B(k)) ,

where B(k) is bounded at all orders in e2 and vanishes
at the Fermi points. Anomalous behavior:

Z (k) ∼ |k− p±F |
− e2

12π2 +··· ,

1− v(k) ∼ |k− p±F |
2e2

5π2 +··· .
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Local order parameters

Let

ζK
x,j =

∑
σ=↑↓

(
a+
~x ,σb

−
~x+~δi ,σ

e ie
∫ 1

0
~A(~x+s~δi )·~δi ds + c .c .

)
ζCDW

x,j =
∑
σ=↑↓

(
a+

x,σa
−
x,σ − b+

x+δj ,σ
b−x+δj ,σ

)
~ζAF

x,j = a+
x,·τ3a

−
x,· − b+

x+δj ,·τ3b
−
x+δj ,·

be the K, CDW, AF local order parameters. Then...
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Response functions

〈ζK
x,j ; ζ

K
y,j ′〉 ∼

cos
(
~p+

F (~x − ~y + ~δj − ~δj ′)
)

|x− y|4−
4

3π2 e2+···

〈ζCDW
x,j ; ζCDW

y,j ′ 〉 ∼
1

|x− y|4−
4

3π2 e2+···

〈ζAF
x,j ; ζAF

y,j ′〉 ∼
1

|x− y|4−
4

3π2 e2+···

The responses to all the other fermionic bilinears
(e.g., Cooper pairs, FM order, lattice current, ...)
have faster decay. This suggests that K, CDW, AF
are dominant instabilities at intermediate coupling.
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Masses

Small Kekulé, charge density wave or Néel
modulations are amplified by the interaction:

||〈ψ−
k′+p±F

ψ−
k′+p±F
〉|| ∼ 1√

|k′|2 + ∆2
, ∆ = ∆

1− 2
3π2 e2+···

0

Kekulé distortion CDW instability

0
/2

0
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Peierls-Kekulé instability

Under small distortions of the honeycomb lattice

t → t~x ,j = t + φ~x ,j , with φ~x ,j = g(`~x ,j − ¯̀) .

In the Born-Oppenheimer approximation, the
phonon field φ~x ,j is fixed by the variational principle:

EBOA = inf
φ

{ κ

2g 2

∑
~x ,j

φ2
~x ,j︸ ︷︷ ︸

elastic energy of the distortion

+ E0({φ~x ,j})︸ ︷︷ ︸
electronic g .s.e. of the

model with a fixed distortion

}
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Extremality condition

The extremality condition for the energy is

κφ~x ,j = g 2〈ζK
x,j〉

φ

We find that, for any j0 ∈ {1, 2, 3},

φ∗~x ,j = φ0 + ∆0 cos
(
~p+

F (~δj − ~δj0 − ~x)
)

is an extremal point of the total energy, provided
that φ0 = c0g

2/κ + · · · for a suitable constant c0

and that ∆0 satisfies a non-BCS gap equation.
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Non-BCS gap equation

The non-BCS gap equation reads

∆0 =
g 2

κ

∫
dk′

Z−1(k′)∆(k′)|Ω(~k ′)|2

k2
0 + v 2(k′)|Ω(~k ′ + ~p+

F )|2 + |∆(k′)|2
,
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Non-BCS gap equation

The non-BCS gap equation reads

∆0 =
g 2

κ

∫
dk′

Z−1(k′)∆(k′)|Ω(~k ′)|2

k2
0 + v 2(k′)|Ω(~k ′ + ~p+

F )|2 + |∆(k′)|2
,

with ∆(k′) = ∆0|k′|−ηK . If ∆0 is a non-trivial soln,
then the system develops a Kekulé pattern.

= "short" bond (t
x,i 0

)

= "long" bond (t
x,i 0

/2)
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Non-BCS gap equation

The non-BCS gap equation reads

1 ' g 2

∫ 1

∆

dρ ρ−
7

12π2 e2+···

which admits a solution for g ≥ gc .

Small interactions → gc = O(
√
t).

E.m. interactions lower gc .

gc → 0 when − 7

12π2
e2 + · · · → −1

The effects of the electron-phonon coupling are
dramatically amplified by the e.m. interactions!
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Method of proof - Vanishing beta function

The proof is based on exact RG methods

Tr{e−βHΛ} =

∫
P(dψ(≤h))P(dA(≤h))e−V

(h)(A(≤h),ψ(≤h))



Introduction The model Main results Method of proof

Method of proof - Vanishing beta function

The proof is based on exact RG methods

Tr{e−βHΛ} =

∫
P(dψ(≤h))P(dA(≤h))e−V

(h)(A(≤h),ψ(≤h))

The vertex ieh

∫
Aψ+ψ− is marginal. Exact

lattice WI imply that the β-function for eh is 0:

= 0
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Vanishing photon mass

The dressed mass of the photon is zero (no
screening), again by an exact lattice WI.

+ = 0

Lattice WIs are ultimately the reason why
Lorentz symmetry is dynamically restored.
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Limitations and relevance of our RG approach

Our analysis assumes that the effective coupling
strength α = e2

ε~c is small compared to v
c , a

condition that is not satisfied by the bare constants.
However, our results can be a posteriori
extrapolated to larger values of α; moreover, there
is no compelling evidence that the effective coupling
(after the integration of the “ultraviolet” scales - an
intrinsically non-perturbative problem) is large.
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Open problems

Much remains to be done!

Our methods seem suitable to understand the
effects of e.m. interactions on the conductivity, to
include the dynamics of a phonon field, bilayer
graphene, possibly in a fully non-perturbative
fashion.
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