The effect of atomic-scale defects and dopants on Graphene electronic structure

Rocco Martinazzo

Dip. di Chimica-Fisica e Elettrochimica Universita' degli Studi di Milano, Milan, Italy

GraphITA GSNL, Assergi (L'Aquila), May 15th - 18th 2011

Outline

2 Hydrogen adsorption

Outline

Outline

Outline

2 Hydrogen adsorption

Ionic binding

- DOSs are unchaged except for donor/acceptor levels
- electron / hole doping
- Atomic species are mobile
- Li, Na, K, Cs.. vs Cl,Br,I,..

Covalent binding

- Midgap states show up in the DOSs
- Atomic species are immobile
- H, F, OH, CH₃, etc. behave similarly to vacancies

See e.g., T. O. Wehling, M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 80, 085428 (2008)

Vacancies vs adatoms

See e.g., F. Banhart, J. Kotakoski, A. V. Krasheninnikov, ACS Nano 5, 26 (2011)

B b

Vacancies vs adatoms

High-energy e^{-} /ion beams \Rightarrow **Random** arrangement

Low-energy beams (kinetic control) \Rightarrow **Clustering** due to preferential sticking

Outline

Hydrogen chemisorption on graphene

- Sticking is thermally activated^{1,2}
- Midgap states are generated upon sticking
- Diffusion does not occur^{3,4}
- Preferential sticking and clustering^{3,5,6}
- [1] L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999)
- [2] X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
- [3] L. Hornekaer et al., Phys. Rev. Lett. 97, 186102 (2006)
- [4] J. C. Meyer et al., Nature 454, 319 (2008)
- [5] A. Andree et al., Chem. Phys. Lett. 425, 99 (2006)
- [6] L. Hornekaer et al., Chem. Phys. Lett. 446, 237 (2007)

Sticking

L. Jeloaica and V. Sidis, *Chem. Phys. Lett.* **300**, 157 (1999) X. Sha and B. Jackson, *Surf. Sci.* **496**, 318 (2002)

▶ ★ 臣 ▶ ...

æ

Midgap states

.. patterned spin-density

Midgap states

$$\mathcal{H}^{TB} = \sum_{\sigma,ij} (t_{ij}a^{\dagger}_{i,\sigma}b_{j,\sigma} + t_{ji}b^{\dagger}_{j,\sigma}a_{i,\sigma})$$

Midgap states

$$H^{TB} = \sum_{ au, ij} (t_{ij} a^{\dagger}_{i, au} b_{j, au} + t_{ji} b^{\dagger}_{j, au} a_{i, au})$$

Theorem

If $n_A > n_B$ there exist (at least) $n_I = n_A - n_B$ "midgap states" with vanishing components on B sites

Proof.

$$\begin{bmatrix} \mathbf{0} & \mathbf{T}^{\dagger} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \text{ with } \mathbf{T} n_{B} x n_{A} (> n_{B})$$

$$\Longrightarrow$$
 T $oldsymbol{lpha}=$ **0** has n_A-n_B solutions

Atomic-scale defects on graphene

・ロット (雪) () () () ()

2

Midgap states

$$H^{Hb} = \sum_{\tau,ij} (t_{ij} a_{i,\tau}^{\dagger} b_{j,\tau} + t_{ji} b_{j,\tau}^{\dagger} a_{i,\tau}) + U \sum_{i} n_{i,\tau} n_{i,-\tau}$$

Theorem

If U > 0, the ground-state at half-filling has

 $S = |n_A - n_B|/2 = n_I/2$

Proof.

E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

...basically, we can apply Hund's rule to previous result

ヘロト ヘワト ヘビト ヘビト

Midgap states for isolated "defects"

M.M. Ugeda, I. Brihuega, F. Guinea and J.M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010)

Atomic-scale defects on graphene

イロト イポト イヨト イヨト

Midgap states for isolated "defects"

 $\psi(x, y, z) \sim 1/r$

V. M. Pereira *et al.*, *Phys. Rev. Lett.* **96**, 036801 (2006); *Phys. Rev. B* **77**, 115109 (2008)

ヘロト ヘヨト ヘヨト ヘ

Dimers

<ロト <回 > < 注 > < 注 > 、

2

Dimers

S. Casolo, O.M. Lovvik, R. Martinazzo and G.F. Tantardini, J. Chem. Phys. 130 054704 (2009)

Atomic-scale defects on graphene

ъ

Dimers

[1] L. Hornekaer, Z. Slijvancanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. Laegsgaard, B. Hammer and F. Besenbacher. *Phys. Rev. Lett.* **96** 156104 (2006)

[2] A. Andree, M. Le Lay, T. Zecho and J. Kupper, Chem. Phys. Lett. 425 99 (2006)

Atomic-scale defects on graphene

・ロン ・ 同 と ・ ヨ と ・ ヨ と

Clusters

 $\mu = 1\mu_B \Rightarrow \mu = 2\mu_B \Rightarrow \mu = 3\mu_B$

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Clusters

イロト イポト イヨト イヨト

2

Role of edges

- zig-zag edge sites have enhanced hydrogen affinity
- geometric effects can be investigated in small graphenes

∃ >

Role of edges

perinaftenile / fenalene

imbalanced 'PAHs'

benzo[cd]pirenile

7 - PAH

pirene

dibenzo[def,mno]crisene /

antrantrene

benzo[ghi]perilene

balanced PAHs

coronene

ヨトイヨト

Atomic-scale defects on graphene

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Role of edges

balanced PAHs

ヘロト ヘワト ヘビト ヘビト

Role of edges: graphenic vs edge sites

Role of edges: graphenic vs edge sites

Atomic-scale defects on graphene

≣⇒

Outline

2 Hydrogen adsorption

Band-gap opening

- Electron confinement: nanoribbons, (nanotubes),etc.
- Symmetry breaking: epitaxial growth, deposition, etc.
- Symmetry preserving: "supergraphenes"

Band-gap opening

- Electron confinement: nanoribbons, (nanotubes),etc.
- Symmetry breaking: epitaxial growth, deposition, etc.
- Symmetry preserving: "supergraphenes"

Band-gap opening

- Electron confinement: nanoribbons, (nanotubes),etc.
- Symmetry breaking: epitaxial growth, deposition, etc.
- Symmetry preserving: "supergraphenes"

e-h symmetry

$$\mathcal{H}^{TB} = \sum_{\sigma,ij} (t_{ij} a^{\dagger}_{i,\sigma} b_{j,\sigma} + t_{ji} b^{\dagger}_{j,\sigma} a_{i,\sigma})$$

Introduction Hydrogen adsorption Bandgap engineering Summary Spatial symmetry

イロト 不得 とくほ とくほとう

æ

Spatial symmetry

 $\begin{array}{l} G(\mathbf{k}) = \{g \in G_0 | g\mathbf{k} = \mathbf{k} + \mathbf{G}\} \\ \Rightarrow \frac{G(\mathbf{K}) = D_{3h}}{} \end{array}$

・ロン ・ 同 と ・ ヨ と ・ ヨ と

æ

Spatial symmetry

$$\begin{array}{l} |A_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N_{BK}}} \sum_{\mathbf{R} \in BK} e^{-i\mathbf{k}\mathbf{R}} |A_{\mathbf{R}}\rangle \\ |B_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N_{BK}}} \sum_{\mathbf{R} \in BK} e^{-i\mathbf{k}\mathbf{R}} |B_{\mathbf{R}}\rangle \end{array}$$

$$\langle r|A_{\mathbf{R}}\rangle = \phi_{\mathcal{P}_{Z}}(\mathbf{r}-\mathbf{R})$$

For $\mathbf{k} = \mathbf{K}$ (or \mathbf{K}')

- $\{|A_{\mathbf{k}}\rangle, |B_{\mathbf{k}}\rangle\}$ span the *E''* irrep of D_{3h}
- Degeneracy is lifted at first order (no i symmetry in D_{3h})

Spatial and *e*-*h* symmetry

Lemma

e-h symmetry holds within each kind of symmetry species (A, E, ..)

Theorem

For any bipartite lattice at half-filling, if the number of E irreps is odd at a special point, there is a degeneracy at the Fermi level, i.e. $E_{gap} = 0$

A simple recipe

- Consider *nxn* graphene superlattices (i.e. *G* = *D*_{6*h*}): degeneracy is expected at Γ, K
- Introduce p_Z vacancies while preserving point symmetry
- Check whether it is possible to turn the number of *E* irreps to be even both at Γ and at K

Counting the number of *E* irreps

n = 4

K: 2A + 2E

K: E

Г	A	E
0 ₃	2 <i>m</i> ²	2 <i>m</i> ²
ī ₃	$2(3m^2+2m+1)$	$2(3m^2+2m)$
2 ₃	$2(3m^2 + 4m + 2)$	$2(3m^2 + 4m + 1)$
Kn	A	E
K _n Ō ₃	A 2 <i>m</i> ²	Е 2 <i>m</i> ²
К _п 0 ₃ 1 ₃	A 2 <i>m</i> ² 2 <i>m</i> (3 <i>m</i> + 2)	E $2m^2$ 2m(3m+2) + 1

• • • • • • • • • • •

< ∃→

 \Rightarrow *n* = 3*m* + 1, 3*m* + 2, *m* $\in \mathbb{N}$

An example

(14,0)-honeycomb

Band-gap opening..

R. Martinazzo, S. Casolo and G.F. Tantardini, Phys. Rev. B, 81 245420 (2010)

..and Dirac cones

..not only: as degeneracy may still occur at $\epsilon \neq \epsilon_F$ new Dirac points are expected

..and Dirac cones

..not only: as degeneracy may still occur at $\epsilon \neq \epsilon_F$ new Dirac points are expected

Antidot superlattices

...the same holds for honeycomb antidots

Antidot superlattices

...the same holds for honeycomb antidots

M. D. Fishbein and M. Drndic, *Appl. Phys. Lett.* **93**, 113107 (2008) T. Shen *et al. Appl. Phys. Lett.* **93**, 122102 (2008)

J. Bai et al. Nature Nantotech. 5, 190 (2010)

Summary

- Covalently bound species generate midgap species upon bond formation
- Midgap states affect chemical reactivity
- Thermodynamically and kinetically favoured configurations minimize sublattice imbalance
- Symmetry breaking is not necessary to open a gap

Acknowledgements

University of Milan

Gian Franco Tantardini

Simone Casolo

Matteo Bonfanti

Chemical Dynamics Theory Group http://users.unimi.it/cdtg

+-X:

C.I.L.E.A. Supercomputing Center Notur I.S.T.M.

Acknowledgements

Thank you for your attention!

