

How to make graphene superconducting

Gianni Profeta

Physics Department, University of L'Aquila, Italy

& Max-Planck Institute of Microstructure Physics, Halle, Germany

Matteo Calandra and Francesco Mauri

IMPMC, University of Paris 6, CNRS, Jussieu, Paris France

• Ultra-relativistic particles near E_F $E = \pm v_F \mathbf{p}, v_F = c/300$

A. H. Castro Neto et al. RMP (2009) Novoselov et al. Nature (2005) Lee et al., Science (2008) Novoselov et al, Science (2007)

- Ultra-relativistic particles near E_F $E = \pm v_F \mathbf{p}, v_F = c/300$
- Effective theory around E_F

$$-iv_F\sigma\cdot\nabla\psi(\mathbf{r})=E\psi(\mathbf{r})$$

A. H. Castro Neto et al. RMP (2009) Novoselov et al. Nature (2005) Lee et al., Science (2008) Novoselov et al, Science (2007)

- $E = \pm v_F \mathbf{p}, v_F = c/300$ • Ultra-relativistic particles near E_F
- Effective theory around E_F

- $-iv_F \sigma \cdot \nabla \psi(\mathbf{r}) = E\psi(\mathbf{r})$
- Cyclotron mass with carriers

- Ultra-relativistic particles near E_F $E = \pm v_F \mathbf{p}, v_F = c/300$
- Effective theory around E_F

- $-iv_F\sigma\cdot\nabla\psi(\mathbf{r})=E\psi(\mathbf{r})$
- Cyclotron mass with carriers

 $E = \pm v_F \mathbf{p}, v_F = c/300$ • Ultra-relativistic particles near E_F

Energy

• Effective theory around E_F

 $-iv_F \sigma \cdot \nabla \psi(\mathbf{r}) = E\psi(\mathbf{r})$

E

• Cyclotron mass with carriers

• High stiffness and high mobility

Novoselov et al, Science (2007)

- Ultra-relativistic particles near E_F $E = \pm v_F \mathbf{p}, v_F = c/300$
- Effective theory around E_F

 $-iv_F\sigma\cdot\nabla\psi(\mathbf{r})=E\psi(\mathbf{r})$

0.06

0.02

-3

-6

3

6

0

 $n (10^{12} \,\mathrm{cm}^{-2})$

ق (1.04 لا

• Cyclotron mass with carriers

- High stiffness and high mobility

- Ultra-relativistic particles near E_F $E = \pm v_F \mathbf{p}, v_F = c/300$
- Effective theory around E_F

$$-iv_F\sigma\cdot\nabla\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

- Cyclotron mass with carriers
- Klein paradox

• High stiffness and high mobility

0.06

е е е

• Room Temperature QHE

A. H. Castro Neto et al. RMP (2009) Novoselov et al. Nature (2005) Lee et al., Science (2008) Novoselov et al, Science (2007) ...but in the long list of graphene remarkable properties, a fundamental block is missing:

SUPERCONDUCTIVITY

...but in the long list of graphene remarkable properties, a fundamental block is missing:

SUPERCONDUCTIVITY

Some experimental discoveries

nature

Vol 446|1 March 2007|doi:10.1038/nature05555

LETTERS

Bipolar supercurrent in graphene

Hubert B. Heersche^{1*}, Pablo Jarillo-Herrero^{1*}, Jeroen B. Oostinga¹, Lieven M. K. Vandersypen¹ & Alberto F. Morpurgo¹

LETTERS PUBLISHED ONLINE: 6 FEBRUARY 2011 | DOI: 10.1038/NPHYS1911

Transport through Andreev bound states in a graphene quantum dot

Travis Dirks, Taylor L. Hughes, Siddhartha Lal † , Bruno Uchoa, Yung-Fu Chen, Cesar Chialvo, Paul M. Goldbart † and Nadya Mason*

$$\lambda = \frac{N(0)D^2}{M\omega^2}$$

is vanishingly small, however it can be varied by rigid doping N(0)

but it increases very slowly

is vanishingly small, however it can be varied by rigid doping N(0)but it increases very slowly

The deformation potential, D, for in-plane modes is high, but 1/ ω^2 is low

is vanishingly Small, however it can be varied by rigid doping N(0)but it increases very slowly

The deformation potential, D, for in-plane modes is high, but 1/ ω^2 is low

THOMAS E. WELLER¹, MARK ELLERBY¹*, SIDDHARTH S. SAXENA²*, ROBERT P. SMITH² AND NEAL T. SKIPPER¹

Superconductivity in the intercalated graphite compounds $C_6 \mbox{Yb}$ and $C_6 \mbox{Ca}$

THOMAS E. WELLER¹, MARK ELLERBY¹*, SIDDHARTH S. SAXENA²*, ROBERT P. SMITH² AND NEAL T. SKIPPER¹

Superconductivity in the intercalated graphite compounds $C_6 \mbox{Yb}$ and $C_6 \mbox{Ca}$

THOMAS E. WELLER¹, MARK ELLERBY¹*, SIDDHARTH S. SAXENA²*, ROBERT P. SMITH² AND NEAL T. SKIPPER¹

The electron-phonon coupling: C_z coupling

M. Calandra and F. Mauri, Phys. Rev. Lett (2005)

Superconductivity in the intercalated graphite compounds C₆Yb and C₆Ca

THOMAS E. WELLER¹, MARK ELLERBY¹*, SIDDHARTH S. SAXENA²*, ROBERT P. SMITH² AND NEAL T. SKIPPER¹

M. S. Dresselhaus and G. Dresselhaus, Adv. in Phys. (2002)
G. Csanyi et al, Nat. Phys. (2005)
I. Mazin and A. V. Balatsky Phil. Mag. Lett. (2010)

The interlayer state

The electron-phonon coupling: C_z coupling

M. Calandra and F. Mauri, Phys. Rev. Lett (2005)

The interlayer state

It is a strongly 3D dispersive state living between carbon layers*

* M. Posternak et al. Phys. Rev. Lett. (1983)

L. Boeri et al. Phys. Rev. B (2007)

The interlayer state

It is a strongly 3D dispersive state living between carbon layers*

* M. Posternak et al. Phys. Rev. Lett. (1983)

L. Boeri et al. Phys. Rev. B (2007)

But it exists even in multiwall nanotubes, fullerenes, BN, MgB2 and.....

Use the interlayer state: put it at E_F

Interlayer state is a truly 2D free-electron state in xy direction, $\psi(x,y) = e^{i(k_x x + k_y y)}$

However, in the z direction is not exactly "free".

Kronig-Penney model of bulk GIC

The interlayer state energy decreases removing the quantum confinement along z

 $a \to \infty$

that is Metal adatoms on Graphene

Metal doped Graphene

We performed first-principles Density Functional Theory calculation of structural, electronic, dynamical and superconducting properties of metal adatoms on Graphene

The electron-phonon matrix element

$$g_{nm}^{\nu}(\mathbf{k},\mathbf{k}+\mathbf{q}) \propto \langle \mathbf{k}+\mathbf{q}m|\frac{\delta v_{\mathrm{SCF}}}{\delta \mathbf{u}_{\mathbf{q}s}}|\mathbf{k}n\rangle$$

Phonon linewidth

$$\gamma_{\mathbf{q}\nu} = \frac{4\pi\omega_{\mathbf{q}\nu}}{N_k(T)} \sum_{\mathbf{k},n,m}^{N_k(T)} |g_{nm}^{\nu}(\mathbf{k},\mathbf{k}+\mathbf{q})|^2 \delta(\varepsilon_{\mathbf{k}n}) \delta(\varepsilon_{\mathbf{k}+\mathbf{q}m})$$

$$\lambda_{\mathbf{q}\nu} = \frac{\gamma_{\mathbf{q}\nu}}{2\pi\omega_{\mathbf{q}\nu}^2\mathcal{N}_{\mathrm{s}}}$$

The Eliashberg function

$$\alpha^2 F(\omega) = \frac{1}{2N_q} \sum_{\mathbf{q}\nu} \lambda_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu} \delta(\omega - \omega_{\mathbf{q}\nu}) \qquad T_c = \frac{\omega_{log}}{1.20} exp\{-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\}$$

Metal doped Graphene

- Ca is the first choice (CaC₆ has Tc=11.5 K)
- $\bullet\,$ Ca adsorbs in the hollow site at 2.24 Å
- IL at E_F ?

Metal doped Graphene

- Ca is the first choice (CaC₆ has Tc=11.5 K)
- $\bullet\,$ Ca adsorbs in the hollow site at 2.24 Å
- IL at E_F ?

Ca on graphene: The interlayer state

Ca on graphene: electron-phonon coupling

The coupling with C_z modes, present in the bulk compound, is small in the monolayer case

The total electron-phonon coupling is $\lambda = 0.40$ with an extimated T_c= 1.4 K ($\lambda = 0.70$ and T_c= 11.5 K)

Removal of quantum confinement reduces λ : Bulk better than Film

Lithium doped Graphene

- There is at least one case among GICs that can be further explored, stage-1 Lithium GIC, LiC₆.
- IL state is completely empty: the strong quantum confinement prevents its occupation
- It is not superconducting

Removal of confinement along c direction should bring the IL at the Fermi level

Lithium doped Graphene

- There is at least one case among GICs that can be further explored, stage-1 Lithium GIC, LiC₆.
- IL state is completely empty: the strong quantum confinement prevents its occupation
- It is not superconducting

Removal of confinement along c direction should bring the IL at the Fermi level

Lithium doped Graphene

- IL state at the Fermi level
- Softening of Li and C_z modes
- \bullet Increase of DOS at $E_{\rm F}$

Lithium doped Graphene Electron-phonon coupling

- The interlayer state allows the coupling with "dormant" C_z modes
- Increases the DOS at the Fermi level
- Allows an additional intra-band and 2 inter-band scattering channels
- Increases the total electron-phonon coupling to $\lambda = 0.61$ and $T_c = 8.1$ K

Lithium on both sides of Graphene

Conclusions

- Rigid doping can not induce electron-phonon driven superconductivity
- Metal adatoms on graphene promotes the interlayer state at the Fermi level
- The coupling depends on the particular adatom, very different from the bulk counterpart
- Lithium on graphene has a sizable electron-phonon coupling
- and can induce superconductivity.

"How to make graphene superconducting"

G. Profeta, M. Calandra and F. Mauri

cond-mat arXiv: xxx.xxxx

Thank you for your attention

