

Incorporation of reduced graphene oxide sheets into organic media for the realization of conducting and photoresponsive nanocomposites

Luca Valentini

Civil and Environmental Engineering Department, University

of Perugia, INSTM - Perugia Research Unit, Strada di Pentima

4, 05100 Terni – Italy

OUTLINE

- What is a graphene oxide platelet (GOP)?
- How are GOPs made?
- Unique features of GOPs.
- Potential applications of GOPs in polymer nanocomposite.
- Current research issues.

PRODUCTION AND PROCESSING of GRAPHENE OXIDE

S. Bittolo Bon et al., (in press)

Scheme 1. Reduction of GO by applying an electric current through a GO film. The ball & stick models represent carboxyl, hydroxyl or epoxide groups.

P. Yao et al., Adv. Mater. 2010, 5008 , 22, 5008

PRODUCTION AND PROCESSING of GRAPHENE OXIDE

C. Mattevi et al., Adv. Funct. Mater. 2009, 19, 2577

PRODUCTION and PREPARATION of GOPs

PLASMA THINNING

PLASMA THINNING

Chem. Phys. Lett. (in press)

C. Mattevi et al., Adv. Funct. Mater. 19 (2009) 2577

 \triangle

습

0.9

. 1.0

PLASMA REDUCTION

1733 cm⁻¹ C=O carbonyl stretching

GOPs after 40' of Ar PLASMA

UNTREATED GOPs

RAMAN

S. Stankovich et al., Carbon 45 (2007) 1558

FLUORINATION of GRAPHENE SHEETS (GSs) by PLASMA

Fluorocarbon plasmas produce fast etching (roughness) and fluorination

CF₄ Plasma

K. Leifer et al., J. Phys. D: Appl. Phys. 43 (2010) 045404

P. Kràl et al., J. Am. Chem. Soc. 130 (2008) 16448

FLUORINATION of GSs (F-GSs): METHOD and SURFACE ANALYSIS

XPS characterization

Table 1	Atomic percentage for the analyzed samples *			
Sample	Atomic percentage			
GSs	C/O			
F-GSs	1/0.15 C/O/F 1/0.11/1.12			

L. Valentini et al., J. Mater. Chem., 2010, 20, 995

PRODUCTION AND PROCESSING of GRAPHENE OXIDE

PRODUCTION AND PROCESSING of GRAPHENE OXIDE

Transparent and Conductive Graphene Oxide/Poly(ethylene glycol) Diacrylate Coatings Obtained by Photopolymerization

(a) Vial containing 0.1mg/ml dispersion of GO in water; (b) FE-SEM image of the extended GO flake obtained from water dispersion and (c) optical micrographs (400 μ m X 200 μ m) of GO flakes dispersed in UV cured polymer matrix.

Transparent and Conductive Graphene Oxide/Poly(ethylene glycol) Diacrylate Coatings Obtained by Photopolymerization

Sample	Gel content ^{a)}	T _g ^{b)}	$R_{\rm s}^{\rm c)}$	
	%	°C	$\Omega \cdot sq^{-1}$	
PEGDA	98	-45	d)	
PEGDA + 0.5 wt% GO	98	-45	d)	
PEGDA + 1 wt% GO	97	-45	5×10^{6}	
PEGDA + 2 wt% GO	98	-45	6300	

M. Sangermano et al., Macromol. Mater. Eng. 296 (2011) 401

Digital photograph of cured system obtained by adding 2 wt% of GO-water dispersion into PEGDA resin and UV-Vis spectra of cured system obtained by adding 0,5 wt% (black) and 2 wt% (red) of GO-water dispersion into PEGDA resin.

Electric field assisted thermal annealing reorganization of graphene oxide/polystyrene latex films

Amino Modified GSs and Pyrene-Based Semiconductor

S. Bittolo Bon, et al. J. Phys. Chem. C 114 (2010) 11252.

Amino Modified GSs and Pyrene-Based Semiconductor

Amino Modified GSs and Pyrene-Based Semiconductor

GRAPHENE/PEDOT:PSS COMPOSITE FILMS in POLYMERIC SOLAR CELLS

Scheme 1 Schematic representation of part of the structure of graphene-PEDOT

Xu et al., Nano Res. 2 (2009) 343.

Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites

S. Bittolo Bon, et al. Chem. Phys. Lett. 494 (2010) 264.

Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites.

CURRENT RESEARCH AND OPEN ISSUES

- Production of large-area graphene sheets for device applications.
- Functionalization and integration of graphene oxide for nanocomposite applications.
- Experimental determination of electrical and morphological properties of GOPs.
- Many unique properties (e.g. for energy applications) have yet to be discovered.

Perugia & Madrid Research Units

Prof. Josè Kenny (Dep. of Civil and Environmental Engineering, University of Perugia and INSTM & Instituto de Ciencia y Tecnologia de Polimeros, CSIC Madrid)

Dr. Silvia Bittolo Bon (Post-Doc, Dep. of Civil and Environmental Engineering, University of Perugia and INSTM)

Dr. Marta Cardinali (Post-Doc, Dep. of Civil and Environmental Engineering, University of Perugia and INSTM)

Dr. Miguel Angel Lopez-Manchado (Instituto de Ciencia y Tecnologia de Polimeros, CSIC Madrid)

Dr. Raquel Verdejo (Instituto de Ciencia y Tecnologia de Polimeros, CSIC Madrid)

The work with the pyrene-based semiconductor was developed with **Prof. Bilal Kaafarani** of the American University of Beirut and was supported by the Petroleum Research Fund (PRF) of the American Chemical Society (grant #: 47343-B10) and the Masri Institute of Energy and Natural Resources.

Acknowledgments