FIELD EMISSION FROM SINGLE AND FEW-LAYER GRAPHENE FLAKES

S. Santandreaa, F. Giubileoa, V. Grossib, S. Santuccib, M. Passacantandob, T. Schroederc, G. Lupinac and A. Di Bartolomeoa

aDipartimento di Fisica, Centro NANO-MATES, Università degli Studi di Salerno, and CNR-SPIN Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
bDipartimento di Fisica, Università degli Studi dell’Aquila, via Vetoio, 67100 Coppito, L’Aquila, Italy
cIHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

Graphene, consisting of a single- or few-graphite layers, has a very high aspect ratio (thickness to lateral size ratio) and a dramatically enhanced local electric field is expected at its edges; it shares many similar or even superior properties as carbon nanotubes (CNTs) and, as CNTs, has high potentiality for field emission (FE) applications [1-3]. So far, most of the work has been performed on graphene films [4,5] or on graphene/polymer composites [6] reporting FE from graphene edges or pleats at low applied fields; no observation of FE current from the inner, flat part of graphene flakes has been reported [7]. We report observation of FE current from the inner, flat part of single- and few-layer graphene flakes, which can make the fabrication of graphene based cathodes easier for FE applications [8].

Single- and few-layer graphene sheets were prepared by mechanical exfoliation of highly ordered pyrolytic graphite and transferred by scotch-tape method on SiO\textsubscript{2} layer thermally grown on p-type Si substrate. The thickness of the SiO\textsubscript{2} layer was chosen to \(\sim 300\) nm. Raman spectroscopy was further exploited to give confirmation of the single- or few-layer graphene. Taking advantage of a special setup, consisting of a two-probe nanomanipulation system (two tungsten tips with curvature radius <100 nm) operating in a scanning electron microscope (SEM) and connected to external source measurement units (SMUs), we investigate FE currents by applying electric fields up to \(2\) kV/\(\mu\)m. The tips, one in contact with graphene and the second at a varying distance from it, were used as the cathode and the anode, respectively.

We show that a high and stable FE current (up to 1 \(\mu\)A), well described by the usual FowlerNordheim (FN) model over five orders of magnitude, can be achieved with a turn-on field of \(~600\) V/\(\mu\)m. This high field is not surprising since the electrons are emitted from a flat surface, which do not benefit from the high field enhancement factor of a tip-like shape. We tested also the emission stability from the flat inner part of single-layer graphene flake, due to its relevance for practical applications. Experimentally, we applied a constant bias and monitored the current over periods of several hours, over which a stable process was confirmed.

References