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Basic definitions
Hybridization vs. properties
This work

Graphane is the hydrogenated form of graphene

a two-dimensional, periodic, and covalently bonded hydrocarbon with a C:H ratio of 1
hydrogen atoms decorate the carbon honeycomb lattice on both the top and bottom side
any graphane conformer retains high crystallographic symmetry (either trigonal or
orthorombic)

Possible hydrogen decorations
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Red: top hydrogen atoms
Gray: bottom hydrogen atoms

Shaded areas: unit cell with lattice
vectors

(a): graphene scaffold (full lines) with
zigzag (zz) and armchair (ac)
directions

(b, c, d): chair-, boat-, and
washboard-graphane
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Graphane
at first theoretically predicted

Phys. Rev. B 75, 153401 (2007) - Phys. Rev. B 77, 035427 (2008)
eventually grown

Science 323, 610 (2009)
since then, many more papers...

Attractive feature

hydrogenation: sp2 → sp3 change in orbital hydridization→ new properties

Change in the orbital hybridization
1 it has been calculated that graphane is an insulator, with an energy gap as large as∼ 3 eV

Phys. Rev. B 75, 153401 (2007) - Phys. Rev. B 77, 035427 (2008)
2 partially H-covered and disordered samples show unlike electronic and phonon properties than

graphene
Science 323, 610 (2009)

3 calculated in-plane stiffness and Poisson ratio of graphane are smaller than those of graphene
4 yield strain is predicted to vary upon temperature and stoichiometry

Topsakal et al., Appl. Phys. Lett. 96, 091912 (2010)
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Our perspective: sp2-to-sp3 change in orbital hybridization is expected to cause

major variations in the mechanical properties of hydrogenated graphene

Highlights

1 characterize non-isotropic linear elastic features
contrary to graphene: Science 321, 385 (2008) - Phys. Rev. Lett. 102, 235502 (2009)

2 increased or reduced “rigidity” ?
linear elastic moduli most likely affected

3 investigate overall mechanical behavior of the systems
anisotropic dependence of its respose to external loads
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Approach: blending togheter atomistic and continuum modeling

Step 0 - Search for equilibrium structures of graphane conformers and establish their
stability
Step 1 - Calculate 2nd-order Cij and 3rd-order Cijk elastic constants
Step 2 - Elaborate a continuum description for (anisotropic) elastic moduli
Step 3 - Investigate mechanical behavior upon loading
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Structure
Stability

(a) C-graphane

(b) B-graphane

(c) W-graphane

Graphane conformes have very different structures

1 specific H sublattice and different buckling
• C-graphane: H alternate on both sides
• B-graphane: H alternate along ac
• W-graphane: H along zz double rows on both sides

2 C-C bond length
• C-graphane and W-graphane: similar to sp3 systems and
much larger than in graphene

→ bond length 1.54Å
• B-graphane: two types of C-C bonds
� connecting two C atoms lying on opposite sides

→ bond length 1.57Å
� connecting two C atoms lying on same sides

→ bond length 1.54Å

3 C-H bond length
typical of any hydrocarbon: 1.1Å
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Structure
Stability

Phonons∗ and energetics
1 phonon branches

• no soft modes (i.e. no instabilities)
• linear k-dependence for LA and TA modes
• k2-dependence for flexural (ZA) mode

2 anisotropic elastic behavior
• C-graphane: isotropic speed of sound
• B- and W-graphane: different sound velocities

3 energetics
• C-graphane: energetically favored conformer
• W- and B-graphane: higher GS energy

0.05 and 0.10 eV per C-H unit
• all conformers thermodynamically accessible,
as indeed experimentally guessed

∗ Compare well with
� Phys. Rev. Lett. 105, 037002 (2010) for C-graphane
� arXiv:1011.0018v1 [cond-mat.mtrl-sci]
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Method
Validation
Second-order stiffness constants (linear elasticity)

1 Total-energy calculations performed by Density Functional Theory (DFT)
QUANTUM ESPRESSO package - J. Phys.: Condens. Matter 21 395502 (2009)

GGA-like XC functional - Vanderbilt ultrasoft pseudopotential
50Ry energy cutoff - (18x18x3) Monkhorst-Pack grid for BZ sampling

2 Atomic positions optimized by using the quasi-Newton algorithm and PBCs
interactions between adjacent atomic sheets hindered by a large spacing > 10 Å

3 Elastic moduli obtained from the (energy) vs. (in-plain strain) curves U = U(ζ)










  

U(ζ) = U0 + 1
2 U(2)ζ2 + 1

6 U(3)ζ3 + O(ζ4)
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Method
Validation
Second-order stiffness constants (linear elasticity)

Becnhmark calculations

energy-vs-strain obtained by in-plane deformations through very many data-points
a technically important issue!

in-plane deformations defined by a single parameter ζ

deformations applied up to 5%

Young [Nm−1] Poisson
graphene

this work 344 0.169
PRB 64, 235406 (2001) 345 0.149
PRB 76, 064120 (2007) 350 0.186

C-graphane
this work 246 0.080
APL, 96, 091912 (2010) 243 0.070
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graphene graphane
C- B- W-

C11 354 248 258 280
C22 225 121
C12 60 20 -1.7 14
C44 147(∗) 114(∗) 93 81

units of Nm−1 (∗)2C44 = C11 − C12

Qualitative trends

1 C11 − C12 difference
→W-graphane the most elastically
anisotropic conformer

2 C44 modulus
→ resistance to a shear deformation
decreases monotonically

3 C12 modulus (or, similarly, the Poisson ratio)
→ much smaller than in pristine graphene
→ lateral contraction upon extension
affected by the new hybridization

4 B-conformer characterized by a
negative C12 value
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Linear regime
Nonlinear elasticity

1 C-graphane: trigonal symmetry (i.e. elastically isotropic as hexagonal graphene)

Utrigo = 1
2 C11

`
�2

xx + �2
yy + 2�2

xy
´

+ C12
`
�xx�yy − �2

xy
´

2 B- and W-conformers: orthorhombic symmetry (i.e. anisotropic linear elastic)

Uortho = 1
2 C11�2

xx + 1
2 C22�2

yy + C12�xx�yy + 2C44�2
xy

3 constitutive in-plane stress-strain equation are straightforwardly

T̂ = ∂U
∂�̂ →

8
<

:

Txx = C11�xx + C12�yy
Tyy = C22�yy + C12�xx
Txy = 2C44�xy

Procedure to get elastic moduli

apply an axial tension σ along the arbitrary direction �n = cos θ�ex + sin θ�ey
→ θ is the angle between applied tension and zigzag direction

get stress components: Txx = σ cos2 θ Txy = σ cos θ sin θ Tyy = σ sin2 θ

invert the constitutive equation→ get longitudinal strain �l transverse strain �t

elastic moduli: E�n = σ
�l

ν�n = − �t
�l
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Linear regime
Nonlinear elasticity

1 Orthogonal symmetry
Young modulus

E�n = ∆

C11s4+C22c4+
„

∆
C44
−2C12

«
c2s2

Poisson ratio

ν�n = −

„
C11+C22−

∆
C44

«
c2s2−C12

“
c4+s4

”

C11s4+C22c4+
„

∆
C44
−2C12

«
c2s2

where: ∆ = C11C22 − C2
12 c = cos θ s = sin θ

2 Trigonal symmetry
obtained by imposing the symmetry condition C11 = C22 and the Cauchy relation
2C44 = C11 − C12

Key features

1 E�n and ν�n directly obtained by the linear elastic constants Cij
→ no need to mimic a traction experiment along the arbitrary direction identified by�n or θ

2 in-plane homogeneous deformations
isotropic case: (i) an axial deformation along the zigzag direction; and (ii) an hydrostatic planar
deformation
anisotropic case: (iii) an axial deformation along the armchair direction; and (iv) a shear
deformation
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Linear regime
Nonlinear elasticity

1 Trigonal symmetry

Utrigo =
1
2

C11(�
2
xx + �2

yy + 2�2
xy) + C12(�xx�yy − �2

xy) +
1
6

C111(�
3
xx + �3

yy) +
1
2

C112(�
2
xx�yy + �xx�

2
yy)

+ 2C144(�xx�
2
xy + �yy�

2
xy) + C114(�

2
xx�xy + �2

yy�xy) + 2C124�xx�xy�yy +
4
3

C444�
3
xy

2 Orthogonal symmetry

Uortho =
1
2

C11�
2
xx +

1
2

C22�
2
yy + 2C44�

2
xy + C12�xx�yy +

1
6

C111�
3
xx +

1
6

C222�
3
yy +

1
2

C112�
2
xx�yy

+
1
2

C122�xx�
2
yy + 2C144�xx�

2
xy + 2C244�yy�

2
xy

graphene graphane
C- B- W-

C111 -1910 -1385 -1609 -1756
C222 -1764 -1827 -487
C112 -341 -195 -20 -75
C122 -55 -296
C124 -411
C114 530
C144 568 -161 -143
C244 -159 -287
C444 ∼ 10−5

units of Nm−1

Qualitative trends

1 H-distribution largely affects nonlinear features

graphene & B-graphane→ inverted anisotropy
graphene & W-graphane→ same anisotropy

2 C444 �= 0 for trigonal symmetry (C-graphane)

additional mirror symmetry→ C444 = 0
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Linear regime
Nonlinear elasticity

Nonlinear constitutive equation

σ�n = E�n��n + D�n�
2
�n

1 D�n is a complicated expression of Cijk

2 orthogonal symmetry:

all Cijk < 0→ D(ortho)
�n < 0

both B- and W-graphane show an
hyperelastic softening behavior

3 trigonal symmetry:

C114, C144 > 0

C-graphane shows both
hyperelastic hardening

or
hyperelastic softening behavior















    

(D�n < 0)
(D�n > 0)
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Conclusions - Cadelano, Palla, Giordano, Colombo, PRB 82, 235414 (2010)

1 All graphane conformers respond to any arbitrarily-oriented extention with a much
smaller lateral contraction than graphene

2 B-graphane has a small and negative Poisson ratio along zz and ac directions
→ axially auxetic elastic behavior

3 C-graphane admits both softening and hardening hyperelasticity

Next steps

disordered systems & H-motifs: tailoring elastic moduli through H-decorantion (?)
thermo-elasticity
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