Elastic Properties of Hydrogenated Graphene

Luciano Colombo

in collaboration with

Emiliano Cadelano (Cagliari), Pierluca Palla (Padova), and Stefano Giordano (Lille)

Department of Physics, University of Cagliari (Italy) and CNR-IOM - Unità SLACS http://www.dsf.unica.it/colombo luciano.colombo@dsf.unica.it

Gran Sasso Natl. Lab. (l'Aquila) - May 15-18, 2011

UniCa - A sud di nessun nord Elastic Properties of Hydrogenated Grap

Introduction

- Basic definitions
- Hybridization vs. properties
- This work

Theoretical set-up

Structure and stability

- Structure
- Stability

- Method
- Validation
- Second-order stiffness constants (linear elasticity)

Mechanical behavior under loading

- Linear regime
- Nonlinear elasticity

Conclusions

Introduction

Theoretical set-up Structure and stability Calculation of elastic constants Mechanical behavior under loading Conclusions

Basic definitions Hybridization vs. properties This work

Graphane is the hydrogenated form of graphene

- a two-dimensional, periodic, and covalently bonded hydrocarbon with a C:H ratio of 1
- hydrogen atoms decorate the carbon honeycomb lattice on both the top and bottom side
- any graphane conformer retains **high crystallographic symmetry** (either trigonal or orthorombic)

Possible hydrogen decorations

Red: top hydrogen atoms **Gray**: bottom hydrogen atoms

Shaded areas: unit cell with lattice vectors

(a): graphene scaffold (full lines) with zigzag (zz) and armchair (ac) directions

(b, c, d): **chair-**, **boat-**, and **washboard-**graphane

Introduction

Theoretical set-up Structure and stability Calculation of elastic constants Mechanical behavior under loading Conclusions

Basic definitions Hybridization vs. properties This work

Graphane

at first theoretically predicted *Phys. Rev. B* **75**, *153401* (2007) - *Phys. Rev. B* **77**, *035427* (2008) eventually grown *Science* **323**, *610* (2009) since then, many more papers...

Attractive feature

hydrogenation: $sp^2 \rightarrow sp^3$ change in orbital hydridization \rightarrow **new properties**

Change in the orbital hybridization

It has been calculated that graphane is an insulator, with an energy gap as large as ~ 3 eV Phys. Rev. B 75, 153401 (2007) - Phys. Rev. B 77, 035427 (2008)

partially H-covered and disordered samples show unlike electronic and phonon properties than graphene

Science 323, 610 (2009)

Solution of graphane are smaller than those of graphane are smaller than those of graphene

yield strain is predicted to vary upon temperature and stoichiometry

Topsakal et al., Appl. Phys. Lett. 96, 091912 (2010)

Introduction

Theoretical set-up Structure and stability Calculation of elastic constants Mechanical behavior under loading Conclusions

Basic definitions Hybridization vs. properties This work

Our perspective: sp^2 -to- sp^3 change in orbital hybridization is expected to cause

major variations in the mechanical properties of hydrogenated graphene

Highlights

Characterize non-isotropic linear elastic features contrary to graphene: Science 321, 385 (2008) - Phys. Rev. Lett. 102, 235502 (2009)

increased or reduced "rigidity" ? linear elastic moduli most likely affected

investigate overall mechanical behavior of the systems anisotropic dependence of its respose to external loads

Approach: blending togheter atomistic and continuum modeling

- Step 0 Search for equilibrium structures of graphane conformers and establish their stability
- Step 1 Calculate 2nd-order Cij and 3rd-order Cijk elastic constants
- Step 2 Elaborate a continuum description for (anisotropic) elastic moduli
- Step 3 Investigate mechanical behavior upon loading

Structure Stability

(a) C-graphane

(b) B-graphane

(c) W-graphane

Graphane conformes have very different structures

specific H sublattice and different buckling

- C-graphane: H alternate on both sides
- B-graphane: H alternate along ac
- W-graphane: H along zz double rows on both sides

C-C bond length

• *C*-graphane and *W*-graphane: similar to sp³ systems and much larger than in graphene

 \rightarrow bond length 1.54Å

B-graphane: two types of C-C bonds

 connecting two C atoms lying on opposite sides
 → bond length 1.57Å
 connecting two C atoms lying on same sides

 \rightarrow bond length 1.54Å

O C-H bond length

typical of any hydrocarbon: 1.1Å

Structure Stability

Phonons* and energetics

- O phonon branches
 - no soft modes (i.e. no instabilities)
 - linear k-dependence for LA and TA modes
 - k^2 -dependence for flexural (ZA) mode

anisotropic elastic behavior

- C-graphane: isotropic speed of sound
- B- and W-graphane: different sound velocities

3 energetics

- C-graphane: energetically favored conformer
- W- and B-graphane: higher GS energy 0.05 and 0.10 eV per C-H unit
- all conformers thermodynamically accessible, as indeed experimentally guessed

* Compare well with > Phys. Rev. Lett. **105**, 037002 (2010) for C-graphane > arXiv:1011.0018v1 [cond-mat.mtrl-sci]

Method Validation Second-order stiffness constants (linear elasticity)

Total-energy calculations performed by Density Functional Theory (DFT)

QUANTUM ESPRESSO package - J. Phys.: Condens. Matter 21 395502 (2009)

- · GGA-like XC functional Vanderbilt ultrasoft pseudopotential
- 50Ry energy cutoff (18x18x3) Monkhorst-Pack grid for BZ sampling
- **Atomic positions optimized** by using the quasi-Newton algorithm and PBCs

interactions between adjacent atomic sheets hindered by a large spacing > 10 Å

Q Elastic moduli obtained from the (energy) vs. (in-plain strain) curves $U = U(\zeta)$

Method Validation Second-order stiffness constants (linear elasticity)

Becnhmark calculations

- energy-vs-strain obtained by in-plane deformations through very many data-points *a technically important issue!*
- in-plane deformations defined by a single parameter ζ
- deformations applied up to 5%

		Young [Nm ⁻¹]	Poissor
graphene			
	this work	344	0.169
	PRB 64, 235406 (2001)	345	0.149
	PRB 76, 064120 (2007)	350	0.186
C-graphane			
	this work	246	0.080
	APL, 96, 091912 (2010)	243	0.070

Method Validation Second-order stiffness constants (linear elasticity)

	graphene	graphane		
		C-	B-	W-
C_{11}	354	248	258	280
C_{22}			225	121
C_{12}	60	20	-1.7	14
C_{44}	$147^{(*)}$	$114^{(*)}$	93	81
un	its of Nm ⁻¹	$(*)2C_{44}$	$C_{11} = C_{11} - C_{11}$	C ₁₂

Qualitative trends

- C₁₁ C₁₂ difference → W-graphane the most elastically anisotropic conformer
- \bigcirc C₄₄ modulus

 \rightarrow resistance to a shear deformation decreases monotonically

- C_{12} modulus (or, similarly, the Poisson ratio) \rightarrow much smaller than in pristine graphene
 - \rightarrow lateral contraction upon extension affected by the new hybridization
- B-conformer characterized by a negative C₁₂ value

Linear regime Nonlinear elasticity

O C-graphane: trigonal symmetry (i.e. elastically isotropic as hexagonal graphene)

$$U_{trigo} = \frac{1}{2}C_{11}\left(\epsilon_{xx}^2 + \epsilon_{yy}^2 + 2\epsilon_{xy}^2\right) + C_{12}\left(\epsilon_{xx}\epsilon_{yy} - \epsilon_{xy}^2\right)$$

B- and W-conformers: orthorhombic symmetry (i.e. anisotropic linear elastic)

$$U_{ortho} = \frac{1}{2}C_{11}\epsilon_{xx}^2 + \frac{1}{2}C_{22}\epsilon_{yy}^2 + C_{12}\epsilon_{xx}\epsilon_{yy} + 2C_{44}\epsilon_{xy}^2$$

S constitutive in-plane stress-strain equation are straightforwardly

$$\hat{T} = \frac{\partial U}{\partial \hat{\epsilon}} \quad \rightarrow \quad \begin{cases} T_{xx} = C_{11}\epsilon_{xx} + C_{12}\epsilon_{yy} \\ T_{yy} = C_{22}\epsilon_{yy} + C_{12}\epsilon_{xx} \\ T_{xy} = 2C_{44}\epsilon_{xy} \end{cases}$$

Procedure to get elastic moduli

- apply an axial tension σ along the arbitrary direction $\vec{n} = \cos \theta \vec{e}_x + \sin \theta \vec{e}_y$ $\rightarrow \theta$ is the angle between applied tension and zigzag direction
- get stress components: $T_{xx} = \sigma \cos^2 \theta$ $T_{xy} = \sigma \cos \theta \sin \theta$ $T_{yy} = \sigma \sin^2 \theta$
- invert the constitutive equation \rightarrow get longitudinal strain ϵ_l transverse strain ϵ_t
- elastic moduli:

$$E_{\vec{n}} = \frac{\sigma}{\epsilon_l}$$

$$t_{\vec{n}} = -\frac{\epsilon_l}{\epsilon_l}$$

Linear regime Nonlinear elasticity

Orthogonal symmetry

· Young modulus

$$E_{\vec{n}} = \frac{\Delta}{C_{11}s^4 + C_{22}c^4 + \left(\frac{\Delta}{C_{44}} - 2C_{12}\right)c^2s^2}$$

Poisson ratio

$$\nu_{\vec{n}} = -\frac{\left(c_{11} + c_{22} - \frac{\Delta}{c_{44}}\right)c^2s^2 - c_{12}\left(c^4 + s^4\right)}{c_{11}s^4 + c_{22}c^4 + \left(\frac{\Delta}{c_{44}} - 2c_{12}\right)c^2s^2}$$

where:
$$\Delta = C_{11}C_{22} - C_{12}^2$$
 $c = \cos\theta$

$$=\cos\theta$$
 $s=\sin\theta$

O Trigonal symmetry

• obtained by imposing the symmetry condition $C_{11} = C_{22}$ and the Cauchy relation $2C_{44} = C_{11} - C_{12}$

Key features

- $E_{\vec{n}}$ and $\nu_{\vec{n}}$ directly obtained by the linear elastic constants C_{ij}
 - \rightarrow no need to mimic a traction experiment along the arbitrary direction identified by \vec{n} or θ

in-plane homogeneous deformations

- isotropic case: (i) an axial deformation along the zigzag direction; and (ii) an hydrostatic planar deformation
- anisotropic case: (iii) an axial deformation along the armchair direction; and (iv) a shear deformation

Linear regime Nonlinear elasticity

- Poisson ratio vanishingly small along zz and ac
- actually, Poisson is negative !

Linear regime Nonlinear elasticity

Trigonal symmetry

$$U_{trigo} = \frac{1}{2}C_{11}(\epsilon_{xx}^2 + \epsilon_{yy}^2 + 2\epsilon_{xy}^2) + C_{12}(\epsilon_{xx}\epsilon_{yy} - \epsilon_{xy}^2) + \frac{1}{6}C_{111}(\epsilon_{xx}^3 + \epsilon_{yy}^3) + \frac{1}{2}C_{112}(\epsilon_{xx}^2\epsilon_{yy} + \epsilon_{xx}\epsilon_{yy}^2) + 2C_{124}(\epsilon_{xx}\epsilon_{xy}\epsilon_{xy} + \epsilon_{xy}\epsilon_{yy}^2) + C_{114}(\epsilon_{xx}^2\epsilon_{xy} + \epsilon_{yy}^2\epsilon_{xy}) + 2C_{124}\epsilon_{xx}\epsilon_{xy}\epsilon_{yy} + \frac{4}{3}C_{444}\epsilon_{xy}^3$$

Orthogonal symmetry

$$U_{ontho} = \frac{1}{2}C_{11}\epsilon_{xx}^2 + \frac{1}{2}C_{22}\epsilon_{yy}^2 + 2C_{44}\epsilon_{xy}^2 + C_{12}\epsilon_{xx}\epsilon_{yy} + \frac{1}{6}C_{111}\epsilon_{xx}^3 + \frac{1}{6}C_{222}\epsilon_{yy}^3 + \frac{1}{2}C_{112}\epsilon_{xx}^2\epsilon_{yy} + \frac{1}{2}C_{122}\epsilon_{xx}\epsilon_{yy}^2 + 2C_{144}\epsilon_{xx}\epsilon_{xy}^2 + 2C_{244}\epsilon_{yy}\epsilon_{xy}^2$$

	graphene		graphane		
		C-	B-	W-	
C_{111}	-1910	-1385	-1609	-1756	Qualitative trends
C_{222}	-1764		-1827	-487	• II distribution langely offerte mentionen fortune
C_{112}	-341	-195	-20	-75	Indistribution largely affects nonlinear features
C_{122}			-55	-296	• graphene & B-graphane \rightarrow inverted anisotropy
C_{124}		-411			• graphene & W-graphane \rightarrow same anisotropy
C_{114}		530			
C_{144}		568	-161	-143	$\bigcirc C_{444} \neq 0$ for trigonal symmetry (C-graphane)
C_{244}			-159	-287	• additional mirror symmetry $\rightarrow C_{444} = 0$
C_{444}		$\sim 10^{-5}$			
		units of Nm ⁻	-1		・ロト (部) (注) (注) き のへの

UniCa - A sud di nessun nord

Elastic Properties of Hydrogenated Graphene

Linear regime Nonlinear elasticity

Nonlinear constitutive equation

 $\sigma_{\vec{n}} = E_{\vec{n}}\epsilon_{\vec{n}} + D_{\vec{n}}\epsilon_{\vec{n}}^2$

- $D_{\vec{n}}$ is a complicated expression of C_{ijk}
- Orthogonal symmetry:

all $C_{ijk} < 0 \rightarrow D_{\vec{n}}^{(ortho)} < 0$

both B- and W-graphane show an hyperelastic softening behavior

Irigonal symmetry:

 $C_{114}, C_{144} > 0$

C-graphane shows both hyperelastic hardening

or hyperelastic softening behavior

イロト 不得 とくほ とくほとう ほ

Conclusions - Cadelano, Palla, Giordano, Colombo, PRB 82, 235414 (2010)

- All graphane conformers respond to any arbitrarily-oriented extention with a much smaller lateral contraction than graphene
- B-graphane has a small and negative Poisson ratio along zz and ac directions
 → axially auxetic elastic behavior
- **O** C-graphane admits both softening and hardening hyperelasticity

Next steps

- disordered systems & H-motifs: tailoring elastic moduli through H-decorantion (?)
- thermo-elasticity

Acknowledgements

Financial support under project M4C *Multiscale Modeling of Complex Materials*

Computational support

