
Introduction
Hydrogen adsorption
Bandgap engineering

Summary

The effect of atomic-scale defects and dopants
on Graphene electronic structure

Rocco Martinazzo

Dip. di Chimica-Fisica e Elettrochimica
Universita’ degli Studi di Milano, Milan, Italy

GraphITA
GSNL, Assergi (L’Aquila), May 15th - 18th 2011

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Outline

1 Introduction

2 Hydrogen adsorption

3 Bandgap engineering

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Outline

1 Introduction

2 Hydrogen adsorption

3 Bandgap engineering

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Outline

1 Introduction

2 Hydrogen adsorption

3 Bandgap engineering

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Outline

1 Introduction

2 Hydrogen adsorption

3 Bandgap engineering

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Ionic binding
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DOSs are unchaged except for donor/acceptor levels
electron / hole doping
Atomic species are mobile
Li, Na, K, Cs.. vs Cl,Br,I,..
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Covalent binding
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Midgap states show up in the DOSs
Atomic species are immobile
H, F, OH, CH3, etc. behave similarly to vacancies

See e.g., T. O. Wehling, M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 80, 085428 (2008)
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Vacancies vs adatoms
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See e.g., F. Banhart, J. Kotakoski, A. V. Krasheninnikov, ACS Nano 5, 26 (2011)
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Vacancies vs adatoms

High-energy e−/ion beams
⇒ Random arrangement

Low-energy beams (kinetic control)
⇒ Clustering due to preferential sticking
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Hydrogen chemisorption on graphene

Sticking is thermally activated1,2

Midgap states are generated upon sticking
Diffusion does not occur3,4

Preferential sticking and clustering3,5,6

[1] L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999)
[2] X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
[3] L. Hornekaer et al., Phys. Rev. Lett. 97, 186102 (2006)
[4] J. C. Meyer et al., Nature 454, 319 (2008)
[5] A. Andree et al., Chem. Phys. Lett. 425, 99 (2006)
[6] L. Hornekaer et al., Chem. Phys. Lett. 446, 237 (2007)
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Sticking

1 2 3 4
z / Å 

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

E 
/ e

V

L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999)
X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
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Midgap states

..patterned spin-density
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Midgap states
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Midgap states

HTB =
�

τ,ij(tija
†
i,τbj,τ + tjib

†
j,τai,τ )

Theorem
If nA > nB there exist (at least) nI = nA − nB "midgap states" with vanishing

components on B sites

Proof.
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=⇒ Tα = 0 has nA − nB solutions
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Midgap states

HHb =
�

τ,ij(tija
†
i,τbj,τ + tjib

†
j,τai,τ ) + U

�
i
ni,τni,−τ

Theorem
If U > 0, the ground-state at half-filling has

S = |nA − nB |/2 = nI/2

Proof.
E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

...basically, we can apply Hund’s rule to previous result
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Midgap states for isolated “defects”

M.M. Ugeda, I. Brihuega, F. Guinea and J.M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010)

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Midgap states for isolated “defects”

ψ(x , y , z) ∼ 1/r

V. M. Pereira et al., Phys. Rev. Lett. 96, 036801 (2006);
Phys. Rev. B 77, 115109 (2008)
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Dimers
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Dimers

S. Casolo, O.M. Lovvik, R. Martinazzo and G.F. Tantardini, J. Chem. Phys. 130 054704 (2009)
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Dimers

[1] [2]

[1] L. Hornekaer, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. Laegsgaard, B. Hammer and F.
Besenbacher. Phys. Rev. Lett. 96 156104 (2006)

[2] A. Andree, M. Le Lay, T. Zecho and J. Kupper, Chem. Phys. Lett. 425 99 (2006)
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Clusters

µ = 1µB ⇒µ = 2µB⇒ µ = 3µB
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Clusters

A2B A3
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Role of edges

zig-zag edge sites have
enhanced hydrogen affinity
geometric effects can be
investigated in small
graphenes
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Role of edges

imbalanced ‘PAHs’ balanced PAHs
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Role of edges
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Role of edges: graphenic vs edge sites

Atomic-scale defects on graphene



Introduction
Hydrogen adsorption
Bandgap engineering

Summary

Role of edges: graphenic vs edge sites
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Band-gap opening

Electron confinement: nanoribbons, (nanotubes),etc.
Symmetry breaking: epitaxial growth, deposition, etc.
Symmetry preserving: “supergraphenes”
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Band-gap opening

Electron confinement: nanoribbons, (nanotubes),etc.
Symmetry breaking: epitaxial growth, deposition, etc.
Symmetry preserving: “supergraphenes”
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e-h symmetry
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Spatial symmetry
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Spatial symmetry
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Spatial symmetry
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For k = K (or K�)

{|Ak� , |Bk�} span the E �� irrep of D3h

Degeneracy is lifted at first order (no
i symmetry in D3h)
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Spatial and e-h symmetry

A E

n even even even or odd

Lemma
e-h symmetry holds within each kind of symmetry

species (A, E, ..)

Theorem
For any bipartite lattice at half-filling, if the number

of E irreps is odd at a special point, there is a

degeneracy at the Fermi level, i.e. Egap = 0

Atomic-scale defects on graphene
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A simple recipe

Consider nxn graphene superlattices (i.e. G = D6h):
degeneracy is expected at Γ, K
Introduce pZ vacancies while preserving point symmetry
Check whether it is possible to turn the number of E irreps
to be even both at Γ and at K

Atomic-scale defects on graphene
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Counting the number of E irreps

n = 4

K: EK: 2A + 2E
 : 2A: 2A + 2E ΓΓ

Γ A E
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⇒ n = 3m + 1, 3m + 2, m ∈ N
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An example

(14, 0)-honeycomb
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Band-gap opening..

Tight-binding

�gap(K ) ∼ 2t
√

1.683/n

DFT

�gap(K ) ∼ 2t
√

1.683/n

R. Martinazzo, S. Casolo and G.F. Tantardini, Phys. Rev. B, 81 245420 (2010)
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..and Dirac cones

..not only: as degeneracy may still occur at � �= �F

new Dirac points are expected
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new Dirac points are expected
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Antidot superlattices

...the same holds for honeycomb antidots
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Antidot superlattices

...the same holds for honeycomb antidots

M. D. Fishbein and M. Drndic, Appl. Phys. Lett. 93,
113107 (2008)

T. Shen et al. Appl. Phys. Lett. 93, 122102 (2008)

J. Bai et al. Nature Nantotech. 5, 190 (2010) J. Bai et al.

Nature Nantotech. 5, 190 (2010) J. Bai et al. Nature

Nantotech. 5, 190 (2010)
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Summary

Covalently bound species generate midgap species upon
bond formation
Midgap states affect chemical reactivity
Thermodynamically and kinetically favoured configurations
minimize sublattice imbalance
Symmetry breaking is not necessary to open a gap
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