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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c * 1/300 the speed of light.
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!K!k" =
1
#2

$ 1
±ei"k

% . !24"

We further assume that the scattering does not mix the
momenta around K and K! points. In Fig. 6, we depict
the scattering process due to the square barrier of width
D.

The wave function in the different regions can be writ-
ten in terms of incident and reflected waves. In region I,
we have

!I!r" =
1
#2

$ 1
sei# %ei!kxx+kyy" +

r
#2

$ 1
sei!$−#" %ei!−kxx+kyy",

!25"

with #=arctan!ky /kx", kx=kF cos #, ky=kF sin #, and kF
the Fermi momentum. In region II, we have

!II!r" =
a
#2

$ 1
s!ei" %ei!qxx+kyy" +

b
#2

$ 1
s!ei!$−"" %ei!−qxx+kyy",

!26"

with "=arctan!ky /qx" and

qx = #!V0 − E"2/!vF
2" − ky

2, !27"

and finally in region III we have a transmitted wave only,

!III!r" =
t

#2
$ 1

sei# %ei!kxx+kyy", !28"

with s=sgn!E" and s!=sgn!E−V0". The coefficients r, a,
b, and t are determined from the continuity of the wave
function, which implies that the wave function has to
obey the conditions !I!x=0,y"=!II!x=0,y" and !II!x
=D ,y"=!III!x=D ,y". Unlike the Schrödinger equation,
we only need to match the wave function but not its
derivative. The transmission through the barrier is ob-
tained from T!#"= tt* and has the form

T!#" =
cos2 " cos2 #

&cos!Dqx"cos # cos "'2 + sin2!Dqx"!1 − ss! sin # sin ""2 . !29"

This expression does not take into account a contribu-
tion from evanescent waves in region II, which is usually
negligible, unless the chemical potential in region II is at
the Dirac energy !see Sec. IV.A".

Note that T!#"=T!−#", and for values of Dqx satisfy-
ing the relation Dqx=n$, with n an integer, the barrier
becomes completely transparent since T!#"=1, indepen-
dent of the value of #. Also, for normal incidence !#
→0 and "→0" and any value of Dqx, one obtains T!0"
=1, and the barrier is again totally transparent. This re-
sult is a manifestation of the Klein paradox !Calogeracos
and Dombey, 1999; Itzykson and Zuber, 2006" and does
not occur for nonrelativistic electrons. In this latter case
and for normal incidence, the transmission is always
smaller than 1. In the limit (V0 ( % (E(, Eq. !29" has the
following asymptotic form:

T!#" )
cos2 #

1 − cos2!Dqx"sin2 #
. !30"

In Fig. 7, we show the angular dependence of T!#" for
two different values of the potential V0; it is clear that
there are several directions for which the transmission is

1. Similar calculations were done for a graphene bilayer
!Katsnelson et al., 2006" with the absence of tunneling in
the forward !ky=0" direction its most distinctive behav-
ior.

The simplest example of a potential barrier is a square
potential discussed previously. When intervalley scatter-
ing and the lack of symmetry between sublattices are
neglected, a potential barrier shows no reflection for
electrons incident in the normal direction !Katsnelson et
al., 2006". Even when the barrier separates regions
where the Fermi surface is electronlike on one side and
holelike on the other, a normally incident electron con-
tinues propagating as a hole with 100% efficiency. This
phenomenon is another manifestation of the chirality of
the Dirac electrons within each valley, which prevents
backscattering in general. The transmission and reflec-
tion probabilities of electrons at different angles depend
on the potential profile along the barrier. A slowly vary-
ing barrier is more efficient in reflecting electrons at
nonzero incident angles !Cheianov and Fal’ko, 2006".

Electrons moving through a barrier separating p- and
n-doped graphene, a p-n junction, are transmitted as

D

V0
E

x

Energy

x

y

θ
φ

φ

D

III III

FIG. 6. !Color online" Klein tunneling in graphene. Top: sche-
matic of the scattering of Dirac electrons by a square potential.
Bottom: definition of the angles # and " used in the scattering
formalism in regions I, II, and III.
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zero-gap semiconductor should diverge at Vg < 0. However, neither
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tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
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h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
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localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
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free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
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is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
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Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c * 1/300 the speed of light.
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We further assume that the scattering does not mix the
momenta around K and K! points. In Fig. 6, we depict
the scattering process due to the square barrier of width
D.

The wave function in the different regions can be writ-
ten in terms of incident and reflected waves. In region I,
we have

!I!r" =
1
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r
#2

$ 1
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!25"

with #=arctan!ky /kx", kx=kF cos #, ky=kF sin #, and kF
the Fermi momentum. In region II, we have

!II!r" =
a
#2

$ 1
s!ei" %ei!qxx+kyy" +

b
#2

$ 1
s!ei!$−"" %ei!−qxx+kyy",

!26"

with "=arctan!ky /qx" and

qx = #!V0 − E"2/!vF
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and finally in region III we have a transmitted wave only,
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t

#2
$ 1

sei# %ei!kxx+kyy", !28"

with s=sgn!E" and s!=sgn!E−V0". The coefficients r, a,
b, and t are determined from the continuity of the wave
function, which implies that the wave function has to
obey the conditions !I!x=0,y"=!II!x=0,y" and !II!x
=D ,y"=!III!x=D ,y". Unlike the Schrödinger equation,
we only need to match the wave function but not its
derivative. The transmission through the barrier is ob-
tained from T!#"= tt* and has the form

T!#" =
cos2 " cos2 #

&cos!Dqx"cos # cos "'2 + sin2!Dqx"!1 − ss! sin # sin ""2 . !29"

This expression does not take into account a contribu-
tion from evanescent waves in region II, which is usually
negligible, unless the chemical potential in region II is at
the Dirac energy !see Sec. IV.A".

Note that T!#"=T!−#", and for values of Dqx satisfy-
ing the relation Dqx=n$, with n an integer, the barrier
becomes completely transparent since T!#"=1, indepen-
dent of the value of #. Also, for normal incidence !#
→0 and "→0" and any value of Dqx, one obtains T!0"
=1, and the barrier is again totally transparent. This re-
sult is a manifestation of the Klein paradox !Calogeracos
and Dombey, 1999; Itzykson and Zuber, 2006" and does
not occur for nonrelativistic electrons. In this latter case
and for normal incidence, the transmission is always
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following asymptotic form:

T!#" )
cos2 #

1 − cos2!Dqx"sin2 #
. !30"

In Fig. 7, we show the angular dependence of T!#" for
two different values of the potential V0; it is clear that
there are several directions for which the transmission is

1. Similar calculations were done for a graphene bilayer
!Katsnelson et al., 2006" with the absence of tunneling in
the forward !ky=0" direction its most distinctive behav-
ior.

The simplest example of a potential barrier is a square
potential discussed previously. When intervalley scatter-
ing and the lack of symmetry between sublattices are
neglected, a potential barrier shows no reflection for
electrons incident in the normal direction !Katsnelson et
al., 2006". Even when the barrier separates regions
where the Fermi surface is electronlike on one side and
holelike on the other, a normally incident electron con-
tinues propagating as a hole with 100% efficiency. This
phenomenon is another manifestation of the chirality of
the Dirac electrons within each valley, which prevents
backscattering in general. The transmission and reflec-
tion probabilities of electrons at different angles depend
on the potential profile along the barrier. A slowly vary-
ing barrier is more efficient in reflecting electrons at
nonzero incident angles !Cheianov and Fal’ko, 2006".

Electrons moving through a barrier separating p- and
n-doped graphene, a p-n junction, are transmitted as
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FIG. 6. !Color online" Klein tunneling in graphene. Top: sche-
matic of the scattering of Dirac electrons by a square potential.
Bottom: definition of the angles # and " used in the scattering
formalism in regions I, II, and III.
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c * 1/300 the speed of light.
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where S(E) ¼ pk2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4pc *
2)1/2 and the best fit

to our data yields c * < 106m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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!K!k" =
1
#2

$ 1
±ei"k

% . !24"

We further assume that the scattering does not mix the
momenta around K and K! points. In Fig. 6, we depict
the scattering process due to the square barrier of width
D.

The wave function in the different regions can be writ-
ten in terms of incident and reflected waves. In region I,
we have

!I!r" =
1
#2

$ 1
sei# %ei!kxx+kyy" +

r
#2

$ 1
sei!$−#" %ei!−kxx+kyy",

!25"

with #=arctan!ky /kx", kx=kF cos #, ky=kF sin #, and kF
the Fermi momentum. In region II, we have

!II!r" =
a
#2

$ 1
s!ei" %ei!qxx+kyy" +

b
#2

$ 1
s!ei!$−"" %ei!−qxx+kyy",

!26"

with "=arctan!ky /qx" and

qx = #!V0 − E"2/!vF
2" − ky

2, !27"

and finally in region III we have a transmitted wave only,

!III!r" =
t

#2
$ 1

sei# %ei!kxx+kyy", !28"

with s=sgn!E" and s!=sgn!E−V0". The coefficients r, a,
b, and t are determined from the continuity of the wave
function, which implies that the wave function has to
obey the conditions !I!x=0,y"=!II!x=0,y" and !II!x
=D ,y"=!III!x=D ,y". Unlike the Schrödinger equation,
we only need to match the wave function but not its
derivative. The transmission through the barrier is ob-
tained from T!#"= tt* and has the form

T!#" =
cos2 " cos2 #

&cos!Dqx"cos # cos "'2 + sin2!Dqx"!1 − ss! sin # sin ""2 . !29"

This expression does not take into account a contribu-
tion from evanescent waves in region II, which is usually
negligible, unless the chemical potential in region II is at
the Dirac energy !see Sec. IV.A".

Note that T!#"=T!−#", and for values of Dqx satisfy-
ing the relation Dqx=n$, with n an integer, the barrier
becomes completely transparent since T!#"=1, indepen-
dent of the value of #. Also, for normal incidence !#
→0 and "→0" and any value of Dqx, one obtains T!0"
=1, and the barrier is again totally transparent. This re-
sult is a manifestation of the Klein paradox !Calogeracos
and Dombey, 1999; Itzykson and Zuber, 2006" and does
not occur for nonrelativistic electrons. In this latter case
and for normal incidence, the transmission is always
smaller than 1. In the limit (V0 ( % (E(, Eq. !29" has the
following asymptotic form:

T!#" )
cos2 #

1 − cos2!Dqx"sin2 #
. !30"

In Fig. 7, we show the angular dependence of T!#" for
two different values of the potential V0; it is clear that
there are several directions for which the transmission is

1. Similar calculations were done for a graphene bilayer
!Katsnelson et al., 2006" with the absence of tunneling in
the forward !ky=0" direction its most distinctive behav-
ior.

The simplest example of a potential barrier is a square
potential discussed previously. When intervalley scatter-
ing and the lack of symmetry between sublattices are
neglected, a potential barrier shows no reflection for
electrons incident in the normal direction !Katsnelson et
al., 2006". Even when the barrier separates regions
where the Fermi surface is electronlike on one side and
holelike on the other, a normally incident electron con-
tinues propagating as a hole with 100% efficiency. This
phenomenon is another manifestation of the chirality of
the Dirac electrons within each valley, which prevents
backscattering in general. The transmission and reflec-
tion probabilities of electrons at different angles depend
on the potential profile along the barrier. A slowly vary-
ing barrier is more efficient in reflecting electrons at
nonzero incident angles !Cheianov and Fal’ko, 2006".

Electrons moving through a barrier separating p- and
n-doped graphene, a p-n junction, are transmitted as
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FIG. 6. !Color online" Klein tunneling in graphene. Top: sche-
matic of the scattering of Dirac electrons by a square potential.
Bottom: definition of the angles # and " used in the scattering
formalism in regions I, II, and III.
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c * 1/300 the speed of light.
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where S(E) ¼ pk2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4pc *
2)1/2 and the best fit

to our data yields c * < 106m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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Room-Temperature Quantum Hall Effect in Graphene 
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The quantum Hall effect (QHE), one example of a quantum phenomenon that occurs on a truly macroscopic scale, has been attracting intense 
interest since its discovery in 1980 (1). The QHE is exclusive to two-dimensional (2D) metals and has elucidated many important aspects of 
quantum physics and deepened our understanding of interacting systems. It has also led to the establishment of a new metrological standard, 
the resistance quantum h/e2 that contains only fundamental constants of the electron charge e and the Planck constant h (2). As many other 
quantum phenomena, the observation of the QHE usually requires low temperatures T, typically below the boiling point of liquid helium (1). 
Efforts to extend the QHE temperature range by, for example, using semiconductors with small effective masses of charge carriers have so far 
failed to reach T above 30K (3,4). These efforts are driven by both innate desire to observe apparently fragile quantum phenomena under 
ambient conditions and the pragmatic need to perform metrology at room or, at least, liquid-nitrogen temperatures. More robust quantum states, 
implied by their persistence to higher T, would also provide added freedom to investigate finer features of the QHE and, possibly, allow higher 
quantization accuracy (2). Here, we show that in graphene – a single layer of carbon atoms tightly packed in a honeycomb crystal lattice – the 
QHE can be observed even at room temperature. This is due to the highly unusual nature of charge carriers in graphene, which behave as 
massless relativistic particles (Dirac fermions) and move with little scattering under ambient conditions (5).  
Figure 1 shows the room-T QHE in graphene. The Hall conductivity xy reveals clear 
plateaux at 2e2/h for both electrons and holes, while the longitudinal conductivity xx 
approaches zero (<10 ) exhibiting an activation energy E 600K (Fig. 1B). The 
quantization in xy is exact within an experimental accuracy of 0.2% (see Fig. 1C). The 
survival of the QHE to such high temperatures can be attributed to the large cyclotron 
gaps  characteristic to Dirac fermions in graphene. Their energy quantization in 
magnetic field B is described by |2| BNevE FN  where vF 106m/s is the Fermi 
velocity and N an integer Landau level (LL) number (5). The expression yields an energy 
gap E 2800K at B =45T if the Fermi energy EF lies between the lowest Landau level 
N=0 and the first excited one N=±1 (inset, Fig. 1B). This implies that, in our experiments 
at room temperature, exceeded the thermal energy kBT by a factor of 10. Importantly, 
in addition to the large cyclotron gap, there are a number of other factors that help the 
QHE in graphene to survive to so high temperatures. First, graphene devices allow for 
very high carrier concentrations (up to 1013 cm-2) with only a single 2D subband occupied, 
which is essential to fully populate the lowest LL even in ultra-high B. This is in contrast to 
traditional 2D systems (for example, GaAs heterostructures) which are either depopulated 
already in moderate B or exhibit multiple subband occupation leading to the reduction of 
the effective energy gap to values well below . Second, the mobility  of Dirac 
fermions in our samples does not change appreciably from liquid-helium to room 
temperature. It remains at 10,000 cm2/Vs, which yields a scattering time of 1310~ sec 
so that the high field limit 1B  is reached in fields of several T.  
These characteristics of graphene foster hopes for the room-T QHE observable in fields 
significantly smaller than 30T. In fact, we observe the Hall plateaus developing already in 
B <20T at 300K. The need for high B is attributed to broadened LLs due to disorder, 
which reduces the activation energy. We expect that improving sample homogeneity and 
achieving higher  (currently limited by static defects) should allow the observation of the 
room-T QHE using conventional magnets. This should open up new vistas for developing 
graphene-based resistance standards (certainly, operational above liquid-nitrogen 
temperature) and for novel quantum devices working at elevated temperatures. 
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Figure 1. Room-temperature QHE in graphene. (A) – 
Optical micrograph of one of the devices used in the 
measurements. The scale is given by the Hall bar’s 
width of 2 m. Device fabrication procedures were 
described in (5). (B) - xy (red) and xx (blue) as a 
function of gate voltages Vg in a magnetic field of 29 T. 
Positive (negative) gate voltages Vg induce electrons 
(holes) in concentrations n = (7.2 1010 cm-2/V) Vg (5). 
The inset illustrates the Landau level quantization for 
Dirac fermions. (C) - Hall resistance Rxy for electrons 
(red) and holes (green) shows the accuracy of the 
observed quantization at 45 T.  

• Klein paradox
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We further assume that the scattering does not mix the
momenta around K and K! points. In Fig. 6, we depict
the scattering process due to the square barrier of width
D.

The wave function in the different regions can be writ-
ten in terms of incident and reflected waves. In region I,
we have

!I!r" =
1
#2

$ 1
sei# %ei!kxx+kyy" +

r
#2

$ 1
sei!$−#" %ei!−kxx+kyy",

!25"

with #=arctan!ky /kx", kx=kF cos #, ky=kF sin #, and kF
the Fermi momentum. In region II, we have

!II!r" =
a
#2

$ 1
s!ei" %ei!qxx+kyy" +

b
#2

$ 1
s!ei!$−"" %ei!−qxx+kyy",

!26"

with "=arctan!ky /qx" and

qx = #!V0 − E"2/!vF
2" − ky

2, !27"

and finally in region III we have a transmitted wave only,

!III!r" =
t

#2
$ 1

sei# %ei!kxx+kyy", !28"

with s=sgn!E" and s!=sgn!E−V0". The coefficients r, a,
b, and t are determined from the continuity of the wave
function, which implies that the wave function has to
obey the conditions !I!x=0,y"=!II!x=0,y" and !II!x
=D ,y"=!III!x=D ,y". Unlike the Schrödinger equation,
we only need to match the wave function but not its
derivative. The transmission through the barrier is ob-
tained from T!#"= tt* and has the form

T!#" =
cos2 " cos2 #

&cos!Dqx"cos # cos "'2 + sin2!Dqx"!1 − ss! sin # sin ""2 . !29"

This expression does not take into account a contribu-
tion from evanescent waves in region II, which is usually
negligible, unless the chemical potential in region II is at
the Dirac energy !see Sec. IV.A".

Note that T!#"=T!−#", and for values of Dqx satisfy-
ing the relation Dqx=n$, with n an integer, the barrier
becomes completely transparent since T!#"=1, indepen-
dent of the value of #. Also, for normal incidence !#
→0 and "→0" and any value of Dqx, one obtains T!0"
=1, and the barrier is again totally transparent. This re-
sult is a manifestation of the Klein paradox !Calogeracos
and Dombey, 1999; Itzykson and Zuber, 2006" and does
not occur for nonrelativistic electrons. In this latter case
and for normal incidence, the transmission is always
smaller than 1. In the limit (V0 ( % (E(, Eq. !29" has the
following asymptotic form:

T!#" )
cos2 #

1 − cos2!Dqx"sin2 #
. !30"

In Fig. 7, we show the angular dependence of T!#" for
two different values of the potential V0; it is clear that
there are several directions for which the transmission is

1. Similar calculations were done for a graphene bilayer
!Katsnelson et al., 2006" with the absence of tunneling in
the forward !ky=0" direction its most distinctive behav-
ior.

The simplest example of a potential barrier is a square
potential discussed previously. When intervalley scatter-
ing and the lack of symmetry between sublattices are
neglected, a potential barrier shows no reflection for
electrons incident in the normal direction !Katsnelson et
al., 2006". Even when the barrier separates regions
where the Fermi surface is electronlike on one side and
holelike on the other, a normally incident electron con-
tinues propagating as a hole with 100% efficiency. This
phenomenon is another manifestation of the chirality of
the Dirac electrons within each valley, which prevents
backscattering in general. The transmission and reflec-
tion probabilities of electrons at different angles depend
on the potential profile along the barrier. A slowly vary-
ing barrier is more efficient in reflecting electrons at
nonzero incident angles !Cheianov and Fal’ko, 2006".

Electrons moving through a barrier separating p- and
n-doped graphene, a p-n junction, are transmitted as

D

V0
E

x

Energy

x

y

θ
φ

φ

D

III III

FIG. 6. !Color online" Klein tunneling in graphene. Top: sche-
matic of the scattering of Dirac electrons by a square potential.
Bottom: definition of the angles # and " used in the scattering
formalism in regions I, II, and III.
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Bipolar supercurrent in graphene
Hubert B. Heersche1*, Pablo Jarillo-Herrero1*, Jeroen B. Oostinga1, Lieven M. K. Vandersypen1

& Alberto F. Morpurgo1

Graphene—a recently discovered form of graphite only one
atomic layer thick1—constitutes a newmodel system in condensed
matter physics, because it is the first material in which charge
carriers behave as massless chiral relativistic particles. The anom-
alous quantization of theHall conductance2,3, which is now under-
stood theoretically4,5, is one of the experimental signatures of the
peculiar transport properties of relativistic electrons in graphene.
Other unusual phenomena, like the finite conductivity of order
4e2/h (where e is the electron charge and h is Planck’s constant) at
the charge neutrality (orDirac) point2, have come as a surprise and
remain to be explained5–13. Here we experimentally study the
Josephson effect14 in mesoscopic junctions consisting of a gra-
phene layer contacted by two closely spaced superconducting
electrodes15. The charge density in the graphene layer can be con-
trolled by means of a gate electrode. We observe a supercurrent
that, depending on the gate voltage, is carried by either electrons in
the conduction band or by holes in the valence band. More impor-
tantly, we find that not only the normal state conductance of
graphene is finite, but also a finite supercurrent can flow at zero
charge density. Our observations shed light on the special role of
time reversal symmetry in graphene, and demonstrate phase
coherent electronic transport at the Dirac point.

Owing to the Josephson effect14,16, a supercurrent can flow through
a normal conductor placed between two closely spaced supercon-
ducting electrodes. For this to happen, transport in the normal con-
ductor must be phase coherent and time reversal symmetry (TRS)
must be present. In graphene, the Josephson effect can be investigated
in the ‘relativistic’ regime15, where the supercurrent is carried by
Dirac electrons. However, it is not clear a priori that graphene can
support supercurrents, because other quantum interference phe-
nomena that require both phase coherence and TRS were found to
be absent or strongly suppressed in previous experiments17. Belowwe
show experimentally that the Josephson effect in graphene is a robust
phenomenon, and argue that its robustness is intimately linked to
graphene’s unique electronic structure.

Single- and few-layer graphene Josephson junctions are fabricated
on oxidized Si substrates by mechanical exfoliation of bulk graphite1,
followed by optical microscope inspection to locate the thinnest
graphitic flakes, and electron beam lithography to define electrical
contacts. Figure 1a shows an atomic force microscope image of a
typical device. We use as superconducting contacts a Ti/Al bilayer
(10/70 nm). Titanium ensures good electrical contact to graphene,
andAl establishes a sufficiently high critical temperature to enable the
observation of supercurrents in a dilution refrigeration set-up18.
Before discussing their superconducting properties, we first char-
acterize the devices with the superconducting electrodes in the nor-
mal state. Figure 1c shows the two-terminal resistance, R, versus gate
voltage, VG, for one of our samples. The strong VG-dependence of R
provides a first indication that the device consists of at most a few
layers of graphene1, since, owing to screening, VG affects the carrier

density only in the bottom one or two layers. For single layers, the
position of the resistance maximum corresponds to the gate voltage
at which the Fermi energy is located at the Dirac point, VD, and we
typically find that jVDj, 20V. We unambiguously determine the
single layer character of a device by quantum Hall effect (QHE)
measurements. Because the superconducting proximity effect
requires two closely spaced electrodes, we can only perform magne-
toconductance measurements in a two terminal configuration. In
general, the conductance, G, measured in this way is a mixture of
longitudinal and Hall signals, but at high fields G< jGHallj (this
approximation is exact at the Hall plateaus19). Indeed, the measure-
ment of G versus VG at B5 10T shows clearly identifiable Hall pla-
teaus at half-integer multiples of 4e2/h (Fig. 1d), characteristic of the
QHE in single layer graphene2,3. This demonstrates that, even in

*These authors contributed equally to this work.

1Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
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Figure 1 | Sample characterization. a, Atomic force microscope image of a
single layer graphene device between two superconducting electrodes. We
have fabricated devices with electrode separations in the range 100–500 nm.
b, Schematic representation of graphene between superconducting
electrodes. The two electrons in a Cooper pair entering graphene go into
different K-valleys, represented by the red and blue cones (see text). c, Two-
terminal resistance versus gate voltage, VG, at T5 30mK and a small
magnetic field, B5 35mT, to drive the electrodes into the normal state.
The aperiodic conductance fluctuations are due to random quantum
interference of electron waves (see also Fig. 4). d, Two terminal conductance,
G, versus VG at high magnetic field, B5 10T, and T5 100mK, showing a
series of steps at half-integer values of 4e2/h, characteristic of the anomalous
QHE in single layer graphene.
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mesoscopic samples, the QHE can be used to identify single layer
devices.

Cooling down the devices below the critical temperature of the
electrodes (Tc< 1.3K) leads to proximity-induced superconductivity
in the graphene layer. A direct proof of induced superconductivity is
the observation of a Josephson supercurrent20. Figure 2a shows the
current–voltage (I–V) characteristics of a single layer device. The cur-
rent flows without resistance (no voltage drop at finite current) below
the critical current, Ic (what we actually measure is the switching
current; the intrinsic Ic may be higher20,21). In our devices, Ic ranged
from,10 nA tomore than 800 nA (at highVG). Remarkably, we have
measured proximity-induced supercurrents in all the devices that we
tested (17 flakes in total, with several devices on some flakes), includ-
ing four flakes that were unambiguously identified as single layer
graphene via QHE (the rest being probably two to four layers thick).
This clear observation demonstrates the robustness of the Josephson
effect in graphene junctions. (The data shown are representative of the
general behaviour observed; the measurements shown in Figs 1, 2a, c,
d and 3 have been taken on the same device, whereas those in Figs 2b
and 4 correspond to a different single layer device, shown in Fig. 1a.)

To investigate further the superconducting properties of our
devices, we measured the dependence of Ic on magnetic field
(Fig. 2b). The critical current exhibits an oscillatory Fraunhofer-like
pattern, with at least six visible side lobes, which is indicative of a
uniform supercurrent density distribution22. The periodicity of the
oscillations is in the ideal case expected to be equal to a flux quantum
Wo divided by the junction area. The area that corresponds to the
2.56 0.5mT period is 0.86 0.2 mm2, which is in good agreement
with the measured device area (0.76 0.2 mm2) determined from
the atomic force microscope image. Applying a radio-frequency field
to the sample results in the observation of quantized voltage steps,
known as Shapiro steps, in the I–V characteristics20. The voltage
steps, of amplitude "v/2e (v is the microwave frequency), are a
manifestation of the a.c. Josephson effect, and are evident in
Fig. 2d. The induced superconductivity manifests itself also at finite
bias in the form of subgap structure in the differential resistance due
to multiple Andreev reflections23, as shown in Fig. 2c. This subgap
structure consists of a series of minima at source–drain voltages
V5 2D/en (n5 1,2…), which enables us to determine the super-
conducting gap, D. We find D5 125 meV, as expected for our Ti/Al
bilayers18. For V. 2D/e, the differential resistance returns to the
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Figure 3 | Bipolar supercurrent transistor behaviour and finite
supercurrent at the Dirac point. a, Colour-scale plot of dV/dI(VG,I). Yellow
means zero, that is, the supercurrent region, and finite dV/dI increases via
orange to dark red. The current is swept fromnegative to positive values, and
is asymmetric owing to the hysteresis associated with an underdamped
junction (see also Fig. 2a inset). The top axis shows the electron density, n, as
obtained from geometrical considerations1. For large negative (positive) VG

the supercurrent is carried by hole (electron) Cooper pairs. The

supercurrent at the Dirac point (VD) is finite. Note that the critical current is
not symmetric with respect to VD. The origin of this asymmetry is not
known, but a similar asymmetry is seen in the normal state conductance
(blue curve). b, Product of the critical current times the normal state
resistance versus VG. The normal state resistance is measured at zero
source–drain bias, at T5 30mK and with a small magnetic field to drive the
electrodes into the normal state. The IcRn product exhibits a dip around the
Dirac point (see main text).

NATURE |Vol 446 | 1 March 2007 LETTERS

57
Nature   ©2007 Publishing Group

mesoscopic samples, the QHE can be used to identify single layer
devices.

Cooling down the devices below the critical temperature of the
electrodes (Tc< 1.3K) leads to proximity-induced superconductivity
in the graphene layer. A direct proof of induced superconductivity is
the observation of a Josephson supercurrent20. Figure 2a shows the
current–voltage (I–V) characteristics of a single layer device. The cur-
rent flows without resistance (no voltage drop at finite current) below
the critical current, Ic (what we actually measure is the switching
current; the intrinsic Ic may be higher20,21). In our devices, Ic ranged
from,10 nA tomore than 800 nA (at highVG). Remarkably, we have
measured proximity-induced supercurrents in all the devices that we
tested (17 flakes in total, with several devices on some flakes), includ-
ing four flakes that were unambiguously identified as single layer
graphene via QHE (the rest being probably two to four layers thick).
This clear observation demonstrates the robustness of the Josephson
effect in graphene junctions. (The data shown are representative of the
general behaviour observed; the measurements shown in Figs 1, 2a, c,
d and 3 have been taken on the same device, whereas those in Figs 2b
and 4 correspond to a different single layer device, shown in Fig. 1a.)

To investigate further the superconducting properties of our
devices, we measured the dependence of Ic on magnetic field
(Fig. 2b). The critical current exhibits an oscillatory Fraunhofer-like
pattern, with at least six visible side lobes, which is indicative of a
uniform supercurrent density distribution22. The periodicity of the
oscillations is in the ideal case expected to be equal to a flux quantum
Wo divided by the junction area. The area that corresponds to the
2.56 0.5mT period is 0.86 0.2 mm2, which is in good agreement
with the measured device area (0.76 0.2 mm2) determined from
the atomic force microscope image. Applying a radio-frequency field
to the sample results in the observation of quantized voltage steps,
known as Shapiro steps, in the I–V characteristics20. The voltage
steps, of amplitude "v/2e (v is the microwave frequency), are a
manifestation of the a.c. Josephson effect, and are evident in
Fig. 2d. The induced superconductivity manifests itself also at finite
bias in the form of subgap structure in the differential resistance due
to multiple Andreev reflections23, as shown in Fig. 2c. This subgap
structure consists of a series of minima at source–drain voltages
V5 2D/en (n5 1,2…), which enables us to determine the super-
conducting gap, D. We find D5 125 meV, as expected for our Ti/Al
bilayers18. For V. 2D/e, the differential resistance returns to the
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(blue), showing that the asymmetry in the main panel is due to hysteretic
behaviour (the retrapping current is smaller than the switching current, as
is typical for an underdamped junction). b, Colour-scale representation of
dV/dI(I,B) at T5 30mK (yellow-orange is zero, that is, the supercurrent
region, and red corresponds to finite dV/dI). The critical current exhibits a
series of oscillations described by a Fraunhofer-like pattern. c, Differential
resistance, dV/dI, versus V, showing multiple Andreev reflection dips below
the superconducting energy gap. The dips in dV/dI occur at values of
V5 2D/en, where n is an integer number. d, a.c. Josephson effect. The
Shapiro steps in the I–V characteristics appear when the sample is irradiated
with microwaves. In the example, we applied 4.5 GHzmicrowaves, resulting
in 9.3mV voltage steps. Inset, colour-scale plot showing the characteristic
microwave amplitude (P1/2; a.u., arbitrary units) dependence of the a.c.
Josephson effect (orange and red correspond respectively to zero and finite
dV/dI).
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Figure 3 | Bipolar supercurrent transistor behaviour and finite
supercurrent at the Dirac point. a, Colour-scale plot of dV/dI(VG,I). Yellow
means zero, that is, the supercurrent region, and finite dV/dI increases via
orange to dark red. The current is swept fromnegative to positive values, and
is asymmetric owing to the hysteresis associated with an underdamped
junction (see also Fig. 2a inset). The top axis shows the electron density, n, as
obtained from geometrical considerations1. For large negative (positive) VG

the supercurrent is carried by hole (electron) Cooper pairs. The

supercurrent at the Dirac point (VD) is finite. Note that the critical current is
not symmetric with respect to VD. The origin of this asymmetry is not
known, but a similar asymmetry is seen in the normal state conductance
(blue curve). b, Product of the critical current times the normal state
resistance versus VG. The normal state resistance is measured at zero
source–drain bias, at T5 30mK and with a small magnetic field to drive the
electrodes into the normal state. The IcRn product exhibits a dip around the
Dirac point (see main text).
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Bipolar supercurrent in graphene
Hubert B. Heersche1*, Pablo Jarillo-Herrero1*, Jeroen B. Oostinga1, Lieven M. K. Vandersypen1
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Graphene—a recently discovered form of graphite only one
atomic layer thick1—constitutes a newmodel system in condensed
matter physics, because it is the first material in which charge
carriers behave as massless chiral relativistic particles. The anom-
alous quantization of theHall conductance2,3, which is now under-
stood theoretically4,5, is one of the experimental signatures of the
peculiar transport properties of relativistic electrons in graphene.
Other unusual phenomena, like the finite conductivity of order
4e2/h (where e is the electron charge and h is Planck’s constant) at
the charge neutrality (orDirac) point2, have come as a surprise and
remain to be explained5–13. Here we experimentally study the
Josephson effect14 in mesoscopic junctions consisting of a gra-
phene layer contacted by two closely spaced superconducting
electrodes15. The charge density in the graphene layer can be con-
trolled by means of a gate electrode. We observe a supercurrent
that, depending on the gate voltage, is carried by either electrons in
the conduction band or by holes in the valence band. More impor-
tantly, we find that not only the normal state conductance of
graphene is finite, but also a finite supercurrent can flow at zero
charge density. Our observations shed light on the special role of
time reversal symmetry in graphene, and demonstrate phase
coherent electronic transport at the Dirac point.

Owing to the Josephson effect14,16, a supercurrent can flow through
a normal conductor placed between two closely spaced supercon-
ducting electrodes. For this to happen, transport in the normal con-
ductor must be phase coherent and time reversal symmetry (TRS)
must be present. In graphene, the Josephson effect can be investigated
in the ‘relativistic’ regime15, where the supercurrent is carried by
Dirac electrons. However, it is not clear a priori that graphene can
support supercurrents, because other quantum interference phe-
nomena that require both phase coherence and TRS were found to
be absent or strongly suppressed in previous experiments17. Belowwe
show experimentally that the Josephson effect in graphene is a robust
phenomenon, and argue that its robustness is intimately linked to
graphene’s unique electronic structure.

Single- and few-layer graphene Josephson junctions are fabricated
on oxidized Si substrates by mechanical exfoliation of bulk graphite1,
followed by optical microscope inspection to locate the thinnest
graphitic flakes, and electron beam lithography to define electrical
contacts. Figure 1a shows an atomic force microscope image of a
typical device. We use as superconducting contacts a Ti/Al bilayer
(10/70 nm). Titanium ensures good electrical contact to graphene,
andAl establishes a sufficiently high critical temperature to enable the
observation of supercurrents in a dilution refrigeration set-up18.
Before discussing their superconducting properties, we first char-
acterize the devices with the superconducting electrodes in the nor-
mal state. Figure 1c shows the two-terminal resistance, R, versus gate
voltage, VG, for one of our samples. The strong VG-dependence of R
provides a first indication that the device consists of at most a few
layers of graphene1, since, owing to screening, VG affects the carrier

density only in the bottom one or two layers. For single layers, the
position of the resistance maximum corresponds to the gate voltage
at which the Fermi energy is located at the Dirac point, VD, and we
typically find that jVDj, 20V. We unambiguously determine the
single layer character of a device by quantum Hall effect (QHE)
measurements. Because the superconducting proximity effect
requires two closely spaced electrodes, we can only perform magne-
toconductance measurements in a two terminal configuration. In
general, the conductance, G, measured in this way is a mixture of
longitudinal and Hall signals, but at high fields G< jGHallj (this
approximation is exact at the Hall plateaus19). Indeed, the measure-
ment of G versus VG at B5 10T shows clearly identifiable Hall pla-
teaus at half-integer multiples of 4e2/h (Fig. 1d), characteristic of the
QHE in single layer graphene2,3. This demonstrates that, even in
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Figure 1 | Sample characterization. a, Atomic force microscope image of a
single layer graphene device between two superconducting electrodes. We
have fabricated devices with electrode separations in the range 100–500 nm.
b, Schematic representation of graphene between superconducting
electrodes. The two electrons in a Cooper pair entering graphene go into
different K-valleys, represented by the red and blue cones (see text). c, Two-
terminal resistance versus gate voltage, VG, at T5 30mK and a small
magnetic field, B5 35mT, to drive the electrodes into the normal state.
The aperiodic conductance fluctuations are due to random quantum
interference of electron waves (see also Fig. 4). d, Two terminal conductance,
G, versus VG at high magnetic field, B5 10T, and T5 100mK, showing a
series of steps at half-integer values of 4e2/h, characteristic of the anomalous
QHE in single layer graphene.
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Transport through Andreev bound states in a
graphene quantum dot
Travis Dirks, Taylor L. Hughes, Siddhartha Lal†, Bruno Uchoa, Yung-Fu Chen, Cesar Chialvo,
Paul M. Goldbart† and Nadya Mason*
When a low-energy electron is incident on an interface between
a metal and superconductor, it causes the injection of a
Cooper pair into the superconductor and the generation of
a hole that reflects back into the metal—a process known
as Andreev reflection. In confined geometries, this process
can give rise to discrete Andreev bound states (ABS),
which can enable transport of supercurrents through non-
superconducting materials and have recently been proposed
as a means of realizing solid-state qubits1–3. Here, we report
transport measurements of sharp, gate-tunable ABS formed in
a superconductor–quantum dot (QD)–normal system realized
on an exfoliated graphene sheet. The QD is formed in graphene
beneath a superconducting contact as a result of a work-
function mismatch4,5. Individual ABS form when the discrete
QD levels are proximity-coupled to the superconducting
contact. Owing to the low density of states of graphene and the
sensitivity of the QD levels to an applied gate voltage, the ABS
spectra are narrow and can be continuously tuned down to zero
energy by the gate voltage.

Although signatures of Andreev reflection and bound states in

conductance have been widely reported
6
, it has been difficult to

directly probe individual ABS. In superconductor (SC)–graphene

structures, most previous work has focused on the nature of

the supercurrent in well-coupled Josephson junctions
7–10

. SC–QD

hybrids in graphene have not been studied, although recent work

has predicted
11–14

and demonstrated
15
that ABS can be isolated by

coupling them to discreteQDenergy levels.However, theABSpeaks

in previous SC–QD experiments were strongly broadened, either by

the large lead density of states
15
or by the lack of a tunnel barrier

16
. In

the work described in this Letter, sharp subgap conductance peaks

are obtained by tunnelling into a proximity-coupled QD formed

within graphene, a high-mobility zero-gap semiconductor
17
. We

focus on the two lowest-energy conductance peaks that occur below

the superconducting gap, and show that they are a signature of

transport by means of ABS. The spectral pattern of these peaks

as a function of gate and bias voltage is consistent with a simple

theoretical model of ABS spectra presented below, and can be

accurately fittedwith amore detailedmicroscopic calculation.

The data shown in this Letter were taken from one single-layer

graphene device (sample A) and one multilayer device (sample B,

approximately ten layers thick). Similar behaviour was seen in three

other devices (two single layer and one bilayer). As the features

are robust on adding layers, it is evident that a precise Dirac-point

band structure is not a requirement. The sample geometry and

measurement circuit are shown in Fig. 1a; the location of the

quantum dot that forms beneath the SC probe is depicted in
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Fig. 2a (discussed below). The devices consist of normal-metal end

contacts (2 nm/50 nm Cr/Au bilayer) and SC tunnel probes
18,19

(200 nm/30 nm Pb/In bilayer) (see Methods for details). The

tunnelling resistances through the SC probes were typically 10–100

times larger than the end-to-end resistances.

In all samples, the charge neutral point, as seen in the end-to-end

conductance versus back-gate measurements, shows a large offset

to the positive-gate side (see Fig. 1c,d for samples A and B, respec-

tively). For example, sample A shows an asymmetric cone around

the Dirac point at Vg ∼ +17.5V. The asymmetry and direction of

offset are consistent with a work-function mismatch (�W ) at the

Cr/Au–graphene interface, which results in a transfer of charge that

equalizes the surface potentials
4
; similar charge transfer effects have

previously been predicted
4
and observed

5
. Because of its low density

of states, graphene is efficiently doped by this charge transfer. The

Cr/Au–graphene interface of the end contacts is dominated by the

work function of the Au. (This is expected because the Cr layer is so

thin as to be discontinuous. It is also similar to the Ti/Au–graphene

contacts measured in ref. 5.) Therefore, �W ranges from 0.14 to

1.04 eV (see Methods for calculation). The positive �W indicates

hole (that is, p-type) doping of the graphene under the end leads.

The superconducting tunnel probe also leads to a local doping of

graphene. However, for the Pb–graphene interface,�W is−1.15 to
−0.25 eV and is negative, implying local electron (n-type) doping.

As illustrated in Figs 1b and 2a, the�Wdoping generates a potential

well underneath the SC tunnel probe, which acts as a confining

potential for aQD—that is, a pn junction. Quantumdots formed by

pn junctions have been observed in carbon nanotubes
20
, by means

of work-function doping, and in graphene
21
, whereKlein tunnelling

through smooth barriers can lead to the confinement of carriers
22,23

.

The QD is also proximity coupled to the superconducting lead.

The interplay of the resulting Andreev reflections with Coulomb

charging effects gives rise to low-energy ABS (see Fig. 2b). The ABS

appear as subgap conductance peaks in our tunnelling conductance

measurements. Independent experimental results demonstrating

individual Andreev bound stateswithin a carbonnanotubeQDhave

recently been obtained
24
.

In Fig. 3a we show typical tunnelling conductance measure-

ments at a fixed gate voltage. The conductance is dominated by the

characteristic BCS shape of the superconducting density of states

of Pb, with the expected gap 2∆ = 2.6meV. Small peaks occur

inside the gap, where wemight expect conductance to be suppressed

exponentially with the tunnel barrier thickness
25
. No conductance

is observed around zero bias, implying that the tunnel barrier is

not leaky. The two lowest-energy subgap peaks are symmetric in

bias voltage and have strong temperature dependence; the peaks
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Figure 3 | Superconducting tunnelling data showing oscillations and
subgap ABS peaks. a, Tunnelling differential conductance versus bias
voltage (set-up as in Fig. 1a), for the multilayer graphene (sample B). Large

conductance oscillations outside the gap are probably Fabry–Perot-like

interference effects. Similar oscillations and subgap peaks are seen in

sample A. Two ABS peaks are visible inside the SC gap. b, Temperature

dependence of the subgap peaks. The temperature from the widest SC gap

is 0.26, 0.45, 0.67, 0.86, 1.25 and 1.54K. The peaks decrease in amplitude

and increase in breadth as temperature is increased to ∼0.8K, then remain

constant; this is consistent with a crossover from a quantum to a classical

dot regime.

with large tunnel barriers25. In contrast, for regime (2), the charging
energy dominates, and the spin-up and down states are widely split
in energy, promoting pair-breaking. TheQD then acts like a normal
metal, and ABS are formed from the discrete QD states, owing to
Andreev reflections at the SC–QD interface. Resonant transport
through the ABS levels leads to the observed subgap conductance
peaks (see Fig. 2b). The clear observation of the subgap features in
the data suggests that our measurements are taken in regime (2).
Further evidence for the existence of ABS in our system is provided
by means of a calculation based on a microscopic Hamiltonian that
describes a graphene quantum well that is proximity coupled to a
superconducting lead (see SupplementaryDiscussion, part II).

A phenomenological model that considers the effect of the SC
proximity coupling on a single pair of spin-split QD states explains
the lowest-energy ABS physics. The effective Hamiltonian for a
proximity-coupled QD is

H = (ε↑ −Eshift)c↑†
c↑ + (ε↑ +U −Eshift)c↓†

c↓ +∆effc↓
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Figure 4 | Back-gate dependence of Andreev bound states.
a, Two-dimensional map of tunnelling differential conductance versus

back-gate voltage (x axis) and bias voltage (y axis) on a log scale for the
single-layer device (sample A). Bright white lines inside the gap (marked as

2∆) are subgap peaks, or ABS, which are symmetric about zero bias and

gate dependent. b, A fit of the conductance data from the detailed

transport calculations for a quantum dot with two levels, a finite charging

energy and couplings to normal-metal and superconducting leads (see

main text and Supplementary Discussion, part I).

where Eshift represents the shift of the QD energy levels by the
gate voltage, ε↑,ε↑ +U are the energies of the spin-split levels (we
could equivalently choose ε↓,ε↓ +U ) and cσ (cσ †) are creation
(annihilation) fermionic operators having spin σ =↑,↓. For a
QD of diameter R ∼ 100 nm (that is, roughly the size of the SC
tunnel probe), the charging energy U ∼ e

2/κR ∼ 5meV (where
e is the electron charge and κ = (1+ ∈)/2, and the dielectric
constant of SiO2 � ≈ 4). The resulting ABS energy levels lie at
E± = 1/2(±U + √

4∆eff
2 +(2ε↑ −2Eshift +U )2). For U = 0, the

energies E± are larger than |∆eff| for all gate voltages, implying that
the appearance of zero-bias subgap conductance features requires a
non-zero charging energy. With increasing charging energy, a pair
of zero-energy ABS appears at a critical value of U ,Uc = 2|∆eff|,
on tuning the gate voltage such that Eshift(Vg) = ε↑ + ∆eff. At
this gate voltage and Uc, the bound states are equal-amplitude
superpositions of particle and hole states, and thus effectively charge
neutral. At zero temperature, a quantum critical point separates
the superconducting (U < Uc) and Coulomb-charging (U > Uc)
regimes of the QD. This suggests the possibility of tuning through
the quantumphase transition by changing the size of theQD.

For U > Uc, ABS appear within the gap, with the gate-voltage
dependence illustrated in Fig. 5. Comparison with Fig. 4a shows
that we observe the low-energy bound states and that E− can be
extracted from the data. For example, atVg =−10V, E− ∼0.5meV.
U can also be extracted if both zero-bias crossing points are
observed, though the accuracy is only as good as the knowledge
of the gate capacitance (see Supplementary Discussion, part I).
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Superconductivity: Is it expected?

λ = N(0)D2

Mω2The total electron-phonon coupling is :

N(0) is vanishingly small, however it can be varied by rigid doping 

but  it increases very slowly 

The deformation potential, D, for in-plane modes is high, but 1/ω2�is low

By symmetry out-of-plane modes do not couple with πelectrons
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.......graphene

Γ≡Γ’

Γ≡K’

But it exists even in multiwall nanotubes, fullerenes, BN, MgB2 and......... 



Use the interlayer state: put it at EF

Interlayer state is a truly 2D free-electron state in xy direction, ψ(x, y) = ei(kxx+kyy)

However, in the z direction is not exactly “free”.

The interlayer state energy decreases removing the quantum confinement along z

En = n2 �2

2m
π2

a2

Kronig-Penney model of bulk GIC
a

a → ∞

that is Metal adatoms on Graphene

a



Metal doped Graphene

We performed first-principles Density Functional Theory calculation of structural, electronic,

dynamical and superconducting properties of metal adatoms on Graphene

7

In absence of the electron-electron interaction a similar
expression involving only the derivative of the bare exter-
nal potential is easily obtained using Fermi golden rule.
In the presence of electron-electron interaction our for-
malism justify the replacement of the derivative of the
bare external potential by the derivative of the static
screened potential VSCF(r, 0) in the Fermi golden rule,
with a well controlled error.

Under certain conditions illustrated in Refs. 29,30, the
phonon linewidth can be reduced to:

γ̃qν =
4πωqν

Nk(T )

Nk(T )
∑

k,m,n

|gνnm(k,k + q)|2 ×

δ(εkn)δ(εk+qm − εkn − ωqν) (29)

Finally, neglecting ωqν in Eq. 29, we obtain Allen
formula29 namely,

γqν =
4πωqν

Nk(T )

Nk(T )
∑

k,n,m

|gνnm(k,k+ q)|2δ(εkn)δ(εk+qm)

(30)
The Allen-formula2,29 is widely used, and represents a

good estimation of the phonon-linewidth due to electron-
phonon effects, in the absence of anharmonic effects and
other scattering processes. In addition, the Allen-formula
relates the phonon-linewidth, as measured by inelastic
Neutron or X-ray measurements, to the electron-phonon
coupling as:

λqν =
γqν

2πω2
qνNs

, (31)

where Ns is the electronic density of states per spin at
the Fermi energy.

With this definition, the isotropic Eliashberg-function
is

α2F (ω) =
1

2Nq

∑

qν

λqνωqνδ(ω − ωqν) (32)

where Nq is the number of phonon wavevectors. We also
define the integrated electron-phonon coupling as

λ(ω) = 2

∫ ω

0

α2F (ω′)

ω′
dω′. (33)

III. WANNIER FUNCTIONS

A. Wannier interpolation of the electron-phonon
matrix element

In this section we explain how to interpolate the
electron-phonon matrix element throughout the BZ using
Wannier functions10.

Using standard first-principles methods a set of Bloch
functions ψkn are generated with k belonging to a uni-
form Nw

k k-points grid centered in Γ. A set of Wannier

functions centered on site R are defined by the relation

|Rm〉 = 1
√

Nw
k

∑

kn

e−ik·RUnm(k)|ψkn〉 (34)

A suitable transformation matrix, Umn(k), must be de-
termined in the so-called Wannierization procedure. In
this work we choose to work with Maximally Localized
Wannier functions (MLWF)14,28, although other Wan-
nierization schemes are possible. In the MLWF case, the
matrices Unm(k) are obtained following the prescription
of Refs. 14,28, which guarantees the maximal space lo-
calization of the final Wannier functions. This last re-
quirement will be essential in the spirit of interpolation
of the electron-phonon matrix elements.

Specifically, if the band-structure is formed by a com-
posite group of bands and the number of Wannier func-
tions is identical to the number of bands of the composite
group of bands, then the matrix Umn(k) is a square ma-
trix. On the contrary if the desired bands are entangled
in a larger manifold, a preliminary disentanglement pro-
cedure from the manifold must be performed and then
the square matrix Umn(k) is obtained28.

The deformation potential matrix-elements ds
mn(k +

q,k) (see Eq. 24) are calculated using linear response
scheme. In this calculation particular care is needed
for the deformation potential at zone center, namely
ds
mn(k,k), as explained in sec. III B.
It is crucial to note that the periodic parts |kn〉 and

|k+qm〉 entering in ds
mn(k+q,k) have to be exactly the

same wavefunctions used for the Wannierization proce-
dure. If this is not the case, spurious (unphysical) phases
appear in the |kn〉’s (i.e. a phase added by the diago-
nalization routine or other computational reasons) and
the localization properties of the Wannier functions in
real space are completely lost. A way to enforce this
condition is to use a uniform grid centered at Γ so that
k + q = k′ + G with k′ still belonging to the original
grid. In this way |k+qn〉 can be obtained from |k′n〉 sim-
ply multiplying by a phase determined by the G-vector
translation and no additional phases occur.

Exploiting translational invariance, the deformation-
potential matrix-element in the Wannier function basis
is obtained by Fourier transform as,

ds
mn(R,RL) = 〈0m|δVSCF

δus,L
|Rn〉

=
1

Nw
k

Nw
k

∑

k,q

∑

m′,n′

e−ik·R+iq·RL

×U∗
mm′(k+ q)ds

m′n′(k+ q,k)Un′n(k)

(35)

where R and RL belong to a Nw
k real-space supercell.

At this point it is important to underline that the grid
of Nw

k k−points on which the Wannierization process
has been carried out has to be exactly the same grid for
the phonon-momentum on which the dynamical matrices
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nierization schemes are possible. In the MLWF case, the
matrices Unm(k) are obtained following the prescription
of Refs. 14,28, which guarantees the maximal space lo-
calization of the final Wannier functions. This last re-
quirement will be essential in the spirit of interpolation
of the electron-phonon matrix elements.

Specifically, if the band-structure is formed by a com-
posite group of bands and the number of Wannier func-
tions is identical to the number of bands of the composite
group of bands, then the matrix Umn(k) is a square ma-
trix. On the contrary if the desired bands are entangled
in a larger manifold, a preliminary disentanglement pro-
cedure from the manifold must be performed and then
the square matrix Umn(k) is obtained28.

The deformation potential matrix-elements ds
mn(k +

q,k) (see Eq. 24) are calculated using linear response
scheme. In this calculation particular care is needed
for the deformation potential at zone center, namely
ds
mn(k,k), as explained in sec. III B.
It is crucial to note that the periodic parts |kn〉 and

|k+qm〉 entering in ds
mn(k+q,k) have to be exactly the

same wavefunctions used for the Wannierization proce-
dure. If this is not the case, spurious (unphysical) phases
appear in the |kn〉’s (i.e. a phase added by the diago-
nalization routine or other computational reasons) and
the localization properties of the Wannier functions in
real space are completely lost. A way to enforce this
condition is to use a uniform grid centered at Γ so that
k + q = k′ + G with k′ still belonging to the original
grid. In this way |k+qn〉 can be obtained from |k′n〉 sim-
ply multiplying by a phase determined by the G-vector
translation and no additional phases occur.

Exploiting translational invariance, the deformation-
potential matrix-element in the Wannier function basis
is obtained by Fourier transform as,

ds
mn(R,RL) = 〈0m|δVSCF

δus,L
|Rn〉

=
1

Nw
k

Nw
k

∑

k,q

∑

m′,n′

e−ik·R+iq·RL

×U∗
mm′(k+ q)ds

m′n′(k+ q,k)Un′n(k)

(35)

where R and RL belong to a Nw
k real-space supercell.

At this point it is important to underline that the grid
of Nw

k k−points on which the Wannierization process
has been carried out has to be exactly the same grid for
the phonon-momentum on which the dynamical matrices

7

In absence of the electron-electron interaction a similar
expression involving only the derivative of the bare exter-
nal potential is easily obtained using Fermi golden rule.
In the presence of electron-electron interaction our for-
malism justify the replacement of the derivative of the
bare external potential by the derivative of the static
screened potential VSCF(r, 0) in the Fermi golden rule,
with a well controlled error.
Under certain conditions illustrated in Refs. 29,30, the

phonon linewidth can be reduced to:

γ̃qν =
4πωqν

Nk(T )

Nk(T )
∑

k,m,n

|gνnm(k,k + q)|2 ×

δ(εkn)δ(εk+qm − εkn − ωqν) (29)

Finally, neglecting ωqν in Eq. 29, we obtain Allen
formula29 namely,

γqν =
4πωqν

Nk(T )

Nk(T )
∑

k,n,m

|gνnm(k,k+ q)|2δ(εkn)δ(εk+qm)

(30)
The Allen-formula2,29 is widely used, and represents a

good estimation of the phonon-linewidth due to electron-
phonon effects, in the absence of anharmonic effects and
other scattering processes. In addition, the Allen-formula
relates the phonon-linewidth, as measured by inelastic
Neutron or X-ray measurements, to the electron-phonon
coupling as:

λqν =
γqν

2πω2
qνNs

, (31)

where Ns is the electronic density of states per spin at
the Fermi energy.
With this definition, the isotropic Eliashberg-function

is

α2F (ω) =
1

2Nq

∑

qν

λqνωqνδ(ω − ωqν) (32)

where Nq is the number of phonon wavevectors. We also
define the integrated electron-phonon coupling as

λ(ω) = 2

∫ ω

0

α2F (ω′)

ω′
dω′. (33)

III. WANNIER FUNCTIONS

A. Wannier interpolation of the electron-phonon
matrix element

In this section we explain how to interpolate the
electron-phonon matrix element throughout the BZ using
Wannier functions10.

Using standard first-principles methods a set of Bloch
functions ψkn are generated with k belonging to a uni-
form Nw

k k-points grid centered in Γ. A set of Wannier

functions centered on site R are defined by the relation

|Rm〉 = 1
√

Nw
k

∑

kn

e−ik·RUnm(k)|ψkn〉 (34)

A suitable transformation matrix, Umn(k), must be de-
termined in the so-called Wannierization procedure. In
this work we choose to work with Maximally Localized
Wannier functions (MLWF)14,28, although other Wan-
nierization schemes are possible. In the MLWF case, the
matrices Unm(k) are obtained following the prescription
of Refs. 14,28, which guarantees the maximal space lo-
calization of the final Wannier functions. This last re-
quirement will be essential in the spirit of interpolation
of the electron-phonon matrix elements.
Specifically, if the band-structure is formed by a com-

posite group of bands and the number of Wannier func-
tions is identical to the number of bands of the composite
group of bands, then the matrix Umn(k) is a square ma-
trix. On the contrary if the desired bands are entangled
in a larger manifold, a preliminary disentanglement pro-
cedure from the manifold must be performed and then
the square matrix Umn(k) is obtained28.

The deformation potential matrix-elements ds
mn(k +

q,k) (see Eq. 24) are calculated using linear response
scheme. In this calculation particular care is needed
for the deformation potential at zone center, namely
ds
mn(k,k), as explained in sec. III B.
It is crucial to note that the periodic parts |kn〉 and

|k+qm〉 entering in ds
mn(k+q,k) have to be exactly the

same wavefunctions used for the Wannierization proce-
dure. If this is not the case, spurious (unphysical) phases
appear in the |kn〉’s (i.e. a phase added by the diago-
nalization routine or other computational reasons) and
the localization properties of the Wannier functions in
real space are completely lost. A way to enforce this
condition is to use a uniform grid centered at Γ so that
k + q = k′ + G with k′ still belonging to the original
grid. In this way |k+qn〉 can be obtained from |k′n〉 sim-
ply multiplying by a phase determined by the G-vector
translation and no additional phases occur.
Exploiting translational invariance, the deformation-

potential matrix-element in the Wannier function basis
is obtained by Fourier transform as,

ds
mn(R,RL) = 〈0m|δVSCF

δus,L
|Rn〉

=
1

Nw
k

Nw
k

∑

k,q

∑

m′,n′

e−ik·R+iq·RL

×U∗
mm′(k+ q)ds

m′n′(k+ q,k)Un′n(k)

(35)

where R and RL belong to a Nw
k real-space supercell.

At this point it is important to underline that the grid
of Nw

k k−points on which the Wannierization process
has been carried out has to be exactly the same grid for
the phonon-momentum on which the dynamical matrices

in order to properly converge the summation in Eq. !17". In
addition, the self-consistent calculation of the imaginary part
of nI

1!r ,! ,T" and of nJ
1!r ,! ,T" at finite !!0 requires to

increase further the number of k points with respect to stan-
dard static linear-response calculations of nI

1!r ,0 ,T".
A remedy to these problems is to define an approximated

force constants matrix, C̃IJ, as

C̃IJ!!,T0" = FIJ#nI
1!r,0,Tph",nJ

1!r,0,Tph",!,T0$ , !21"

that is, !i" the frequency dependence on nI
1!r ,! ,Tph" is ne-

glected and its static limit !!=0" is considered and !ii" nI
1

and nJ
1 are calculated at the temperature Tph instead of T0.

The quantity Tph is the electronic temperature commonly
used in a self-consistent linear-response calculation. Usually
Tph is much larger then the physical temperature T0, !e.g.,
Tph%4000 K".28 The main consequence of the stationary
property of the functional FIJ is that it allows us to compute
phonon frequencies from an approximate force-constant ma-
trix C̃IJ!! ,T0" in a nonself-consistent way and performing an
error that is quadratic in &nI

1!r ,! ,T0"−nI
1!r ,0 ,Tph"&.

Thus, a time-consuming self-consistent calculation of the
nonadiabatic force constants CIJ!! ,T0" has been replaced by
an approximate nonself-consistent one, C̃IJ!! ,T0", with an
error that is negligible for the phonon frequencies, as it will
be demonstrated in the applications considered in this work.

We now first add and subtract CIJ!0,Tph" !the standard
linear-response adiabatic self-consistent force constants" in
the left member of Eq. !21", and then perform a Fourier
transform to obtain

C̃sr!q,!,T0" = "sr!q,!,T0" + Csr!q,0,Tph" , !22"

where

"sr!q,!,T0"

=
2

Nk!T0" '
kij

Nk!T0"
fki!T0" − fk+qj!T0"

#ki − #k+qj + ! + i$

% dij
s !k,k + q"d ji

r !k + q,k"

−
2

Nk!Tph"
'
kij

Nk!Tph"
fki!Tph" − fk+qj!Tph"

#ki − #k+qj

% dij
s !k,k + q"d ji

r !k + q,k" !23"

with the following definition of the deformation potential
matrix element:

dmn
s !k + q,k" = (k + qm&

&vSCF

&uqs
&kn) !24"

and where &kn) is the periodic part of the Bloch wave func-
tion, i.e., &'kn)=eik·r&kn) /*Nk and uqs is the Fourier trans-
form of the phonon displacement uLs. The integration in Eq.
!24" is understood to be on the unit cell. The quantity vSCF is
the periodic part of the static self-consistent potential,
namely, VSCF!r"=vSCF!r"eiq·r. This static self-consistent po-
tential is calculated using standard linear response at tem-
perature Tph.

The calculation of "sr!q ,! ,T0" requires the knowledge of
band energies and eigenfunctions on a denser Nk!T0" k-point
grid using an electronic temperature T0 only in an energy
window of width +max!Tph,!" around the Fermi level.
Moreover it does not require to recalculate the derivative of
the self-consistent potential. As such it is much less time
consuming then an linear-response self-consistent calculation
to obtain Crs!q ,0 ,T0". The nonadiabatic phonon frequencies
are calculated !in the clean limit" nonself-consistently from
the Hermitian part of C̃sr!q ,! ,T0" #see Eq. !5"$.

The expression of the adiabatic force constants at the
physical temperature T0 is obtained setting !=0 in the
Eq. !22",

C̃sr!q,! = 0,T0" = "sr!q,0,T0" + Csr!q,0,Tph" . !25"

In this case the force constants are Hermitian and the error in
the approximated force constants is quadratic in
&nI

1!r ,0 ,T0"−nI
1!r ,0 ,Tph"&.

The advantage of the present procedure is that the linear-
response self-consistent calculation is performed with a
small number of k points Nk!Tph" whereas the low-
temperature force constants are obtained with a nonself-
consistent calculation over much denser Nk!T0" k-points
mesh. This approach requires, as in a conventional electron-
phonon coupling calculation, the knowledge of the wave
functions in a dense Nk!T0" k-points grid and in an energy
window of the order of the maximum between Tph and !
around the Fermi level, but does not require the self-
consistent linear-response calculation of the derivative of the
Kohn-Sham potential with respect to an atomic displace-
ment. As such the procedure is substantially less time con-
suming.

Finally from Eq. !23" it is evident that the largest differ-
ence between the adiabatic and nonadiabatic phonon fre-
quencies occurs at zone center !q=0". Indeed the intraband
contribution !i= j" leads to a zero denominator in the second
term on the rhs and a nonzero one proportional to ! in the
first term on the rhs !see also Refs. 12, 13, and 21".

G. Phonon frequencies interpolation over k points at fixed
phonon momentum: Practical implementation

The practical implementation of the above theoretical for-
mulation for the phonon frequencies proceeds as follows:

!1" Perform a standard linear-response calculation for a
given phonon momentum q using a Nk!Tph" k-points mesh
and smearing Tph for the electronic integration to obtain
Csr!q ,0 ,Tph".

!2" In order to perform the second summation in
"sr!q ,! ,T0" #Eq. !23"$, calculate deformation-potential ma-
trix element of Eq. !24" on the electron-momentum grid
composed of Nk!Tph" k points using a smearing Tph.

!3" Generate wave functions &kn) and energies #kn on the
denser Nk!T0" electron-momentum k-points grid.

!4" Perform a second nonself-consistent calculation of the
deformation-potential matrix element on the more dense
Nk!T0" k-points grid using smearing T0 and vSCF obtained on
the Nk!Tph" grid to obtain the first summation in
"sr!q ,! ,T0".
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!5" Calculate C̃sr!q ,! ,T0" #or C̃sr!q ,!=0,T0"$ using Eq.
!22" #or Eq. !25"$.

!6" Diagonalize the dynamical matrix to obtain phonon
frequencies and phonon eigenvectors.

The procedure illustrated in this section is used to obtain
at a fixed phonon momentum q well-converged phonon fre-
quencies with respect to electronic k points and smearing.
Then standard Fourier interpolation29 can be performed to
obtain dynamical matrices throughout the BZ. However, this
procedure, has still two main computational shortcomings.
First, the calculations of the wave functions and matrix ele-
ments !points 3 and 4" become cumbersome when very
dense Nk!T0" k-points grid for the electron momentum are
necessary to converge. Second, in presence of phonon
anomalies and not-too-smooth phonon dispersion a dense k
sampling of the phonon BZ is required.

An optimal solution to overcome these problems is repre-
sented by the use of maximally localized Wannier
functions15,30 as an alternative electron basis function. The
method and the implementation of the Wannier functions ap-
proach for the electron-phonon interpolation is presented in
Sec. III.

H. Phonon linewidth and of the electron-phonon coupling

The imaginary part of the force-constant matrix is related
to phonon damping, namely, the energy-conserving decay of
a phonon into particle-hole pairs.

The imaginary part of Eq. !16" is

Im#CIJ!!,T"$ = 2 %
ki,k!j

Nk!T"

#fki!T" − fk!j!T"$

" &#'$k!j(Re)%VSCF!r,!"
%uI

*($ki+

"'$ki(
%Vext!r"

%uJ
($k!j+ " %!&ki − &k!j + !"

+ '$k!j(Im)%VSCF!r,!"
%uI

*($ki+

"'$ki(
%Vext!r"

%uJ
($k!j+" P) 1

&ki − &k!j + !*, ,

!26"

where P indicates the principal part. To obtain Eq. !26" we
have assume that the unperturbed Hamiltonian is time-
reversal symmetric so that a real set of eigenfunctions exists.

This expression is exact but it has two disadvantages.
First it requires the expensive calculation of the derivative of
the self-consistent potential at finite frequency both in its real
and imaginary parts. Second the phonon decay in electron-
hole pairs is not manifest in the term including the principal
part. These problems persist if the imaginary part of Eq. !17"
is considered, since, in this functional, both %VSCF!r ,!" /%uI
and nI

1!r ,! ,T" are complex quantities. These two shortcom-
ings are absent if the approximated force-constant matrix in
Eq. !21" is used. Indeed the imaginary part of Eq. !21" is

Im#C̃IJ!!,T"$ = 2# %
ki,k!j

Nk!T"

#fki!T" − fk!j!T"$

" '$k!j(
%VSCF!r,0"

%uI
($ki+

"'$ki(
%VSCF!r,0"

%uJ
($k!j+%!&ki − &k!j + !"

!27"

with an error quadratic in (nI
1!r ,!"−nI

1!r ,0"(. Fourier trans-
forming and replacing Eq. !27" in Eq. !9" gives the well-
known equation for the phonon linewidth 'q( full width half
maximum !FWHM", that is,

'q(
Fermi =

4#

Nk!T" %
k,m,n

Nk!T"

(gnm
( !k,k + q"(2

" !fkn − fk+qm"%!&k+qm − &kn − !q(" , !28"

where gnm
( !k ,k+q"=%seq(

s ·dmn
s !k+q ,k" /-2Ms!q(.

In absence of the electron-electron interaction a similar
expression involving only the derivative of the bare external
potential is easily obtained using Fermi golden rule. In the
presence of electron-electron interaction our formalism jus-
tify the replacement of the derivative of the bare external
potential by the derivative of the static screened potential
VSCF!r ,0" in the Fermi golden rule with a well-controlled
error.

Under certain conditions illustrated in Refs. 31 and 32,
the phonon linewidth can be reduced to

'̃q( =
4#!q(

Nk!T" %
k,m,n

Nk!T"

(gnm
( !k,k + q"(2

" %!&kn"%!&k+qm − &kn − !q(" . !29"

Finally, neglecting !q( in Eq. !29", we obtain Allen
formula,31 namely,

'q( =
4#!q(

Nk!T" %
k,n,m

Nk!T"

(gnm
( !k,k + q"(2%!)kn"%!)k+qm" . !30"

The Allen formula2,31 is widely used, and represents a good
estimation of the phonon linewidth due to electron-phonon
effects, in the absence of anharmonic effects and other scat-
tering processes. In addition, the Allen formula relates the
phonon linewidth, as measured by inelastic neutron or x-ray
measurements, to the electron-phonon coupling as

*q( =
'q(

2#!q(
2 Ns

, !31"

where Ns is the electronic density of states per spin at the
Fermi energy.

With this definition, the isotropic Eliashberg function is
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!

k

q

k+q

The electron-phonon matrix element

Phonon linewidth

The Eliashberg function

Tc =
ωlog

1.20 exp{−
1.04(1+λ)

λ−µ∗(1+0.62λ)}



Metal doped Graphene

• Ca is the first choice (CaC6 has Tc=11.5 K)

• Ca adsorbs in the hollow site at 2.24 Å

•  IL at EF ?
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• Ca is the first choice (CaC6 has Tc=11.5 K)

• Ca adsorbs in the hollow site at 2.24 Å

•  IL at EF ?



Ca on graphene:
The interlayer state
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The IL moves away from graphene, reducing the electron-phonon coupling 

with Cz modes
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Ca on graphene: electron-phonon coupling
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The coupling with Cz modes, present in the bulk compound, is small in the monolayer case

The total electron-phonon coupling is λ= 0.40 with an extimated Tc= 1.4 K ( λ= 0.70 and  Tc= 11.5 K)

Removal of quantum confinement reduces λ: Bulk better than Film



Lithium doped Graphene 
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• There is at least one case among GICs that can be further explored, stage-1 Lithium GIC, LiC6. 

• IL state is completely empty:  the strong quantum confinement prevents its occupation 

• It is not superconducting

Removal of confinement along c direction should bring the IL at the Fermi level



Lithium doped Graphene 
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• There is at least one case among GICs that can be further explored, stage-1 Lithium GIC, LiC6. 

• IL state is completely empty:  the strong quantum confinement prevents its occupation 

• It is not superconducting

Removal of confinement along c direction should bring the IL at the Fermi level



Lithium doped Graphene 
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Phonon DOS

• IL state at the Fermi level 

• Softening of Li and Cz modes

• Increase of DOS at EF
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Lithium doped Graphene
Electron-phonon coupling 

• Bulk LiC6 is not superconducting (no interlayer state)

•The interlayer state allows the coupling with “dormant” Cz modes

• Increases the DOS at the Fermi level 

• Allows an additional intra-band and 2 inter-band scattering channels

• Increases the total electron-phonon coupling to λ= 0.61 and  Tc= 8.1 K 
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Conclusions

• Rigid doping can not induce electron-phonon driven superconductivity

• Metal adatoms on graphene promotes the interlayer state at the Fermi level

• The coupling depends on the particular adatom, very different from the bulk counterpart 

• Lithium on graphene has a sizable electron-phonon coupling

• and can induce superconductivity.

“How to make graphene superconducting”
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